메뉴 건너뛰기




Volumn 46, Issue 8, 2010, Pages

A hidden seasonal switching model for high-resolution breakpoint rainfall data

Author keywords

[No Author keywords available]

Indexed keywords

BREAKPOINT; EM ALGORITHMS; HIDDEN SEMI-MARKOV MODELS; HIGH RESOLUTION; NEW ZEALAND; NON-HOMOGENEOUS; PRECIPITATION MECHANISM; RAINFALL DATA; RAINFALL MEASUREMENTS; RECURSIONS; SEASONAL VARIABILITY; SEASONALITY; STATE DYNAMICS; SWITCHING MODEL; THOMSON;

EID: 77955579651     PISSN: 00431397     EISSN: None     Source Type: Journal    
DOI: 10.1029/2009WR008602     Document Type: Article
Times cited : (10)

References (21)
  • 1
    • 0037466132 scopus 로고    scopus 로고
    • A fully probabilistic approach to extreme rainfall modeling
    • Coles, S., L. R. Pericchi, and S. Sisson (2003), A fully probabilistic approach to extreme rainfall modeling, J. Hydrol., 273, 35-50.
    • (2003) J. Hydrol. , vol.273 , pp. 35-50
    • Coles, S.1    Pericchi, L.R.2    Sisson, S.3
  • 2
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • Dempster, A. P., N. M. Laird, and D. B. Rubin (1977), Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc., Ser. B, 39, 1-38.
    • (1977) J. R. Stat. Soc., Ser. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 3
    • 0002585974 scopus 로고
    • Variable duration mdels for speech
    • edited by J. D. Ferguson, Inst. for Defense Anal., Princeton, N. J
    • Ferguson, J. D. (1980), Variable duration models for speech, in Symposium on the Application of Hidden Markov Models to Text and Speech, edited by J. D. Ferguson, pp. 143-179, Inst. for Defense Anal., Princeton, N. J.
    • (1980) Symposium on the Application of Hidden Markov Models to Text and Speech , pp. 143-179
    • Ferguson, J.D.1
  • 4
    • 0141907306 scopus 로고    scopus 로고
    • Estimating hidden semi-Markov chains from discrete sequences
    • Guédon, Y. (2003), Estimating hidden semi-Markov chains from discrete sequences, J. Comput. Graphical Stat., 12, 604-639.
    • (2003) J. Comput. Graphical Stat. , vol.12 , pp. 604-639
    • Guédon, Y.1
  • 5
    • 33751236183 scopus 로고    scopus 로고
    • Exploring the state sequence space for hidden Markov and semi-Markov chains
    • Guédon, Y. (2007), Exploring the state sequence space for hidden Markov and semi-Markov chains, Comput. Stat. Data Anal., 51, 2379-2409.
    • (2007) Comput. Stat. Data Anal. , vol.51 , pp. 2379-2409
    • Guédon, Y.1
  • 6
    • 0031566918 scopus 로고    scopus 로고
    • Computing the observed information in the hidden Markov model using the em algorithm
    • Hughes, J. P. (1997), Computing the observed information in the hidden Markov model using the EM algorithm, Probab. Stat. Lett., 32, 107-114.
    • (1997) Probab. Stat. Lett. , vol.32 , pp. 107-114
    • Hughes, J.P.1
  • 8
    • 69249088887 scopus 로고    scopus 로고
    • Hierarchical Bayesian modeling of multisite daily rainfall occurrence: Rainy season onset, peak, and end
    • doi:10.1029/2008WR007485
    • Lima, C. H. R., and U. Lall (2009), Hierarchical Bayesian modeling of multisite daily rainfall occurrence: rainy season onset, peak, and end, Water Resour. Res., 45, W07422, doi:10.1029/2008WR007485.
    • (2009) Water Resour. Res. , vol.45
    • Lima, C.H.R.1    Lall, U.2
  • 9
    • 0036750717 scopus 로고    scopus 로고
    • Exact computation of the observed information matrix for hidden Markov models
    • Lystig, T. C., and J. P. Hughes (2002), Exact computation of the observed information matrix for hidden Markov models, J. Comput. Graphics Stat., 11, 678-689.
    • (2002) J. Comput. Graphics Stat. , vol.11 , pp. 678-689
    • Lystig, T.C.1    Hughes, J.P.2
  • 10
    • 0001232538 scopus 로고
    • A fast improvement to the em algorithm in its own terms
    • Meilijson, I. (1989), A fast improvement to the EM algorithm in its own terms, J. R. Stat. Soc., Ser. B, 51, 127-138.
    • (1989) J. R. Stat. Soc., Ser. B , vol.51 , pp. 127-138
    • Meilijson, I.1
  • 11
    • 0033475401 scopus 로고    scopus 로고
    • Direct calculation of the information matrix via the em algorithm
    • Oakes, D. (1999), Direct calculation of the information matrix via the EM algorithm, J. R. Stat. Soc., Ser. B, 61, 479-482.
    • (1999) J. R. Stat. Soc., Ser. B , vol.61 , pp. 479-482
    • Oakes, D.1
  • 12
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner, L. R. (1989), A tutorial on hidden Markov models and selected applications in speech recognition, Proc. IEEE, 77, 257-285.
    • (1989) Proc. IEEE , vol.77 , pp. 257-285
    • Rabiner, L.R.1
  • 13
    • 0001557835 scopus 로고
    • Breakpoint representation of rainfall
    • Sansom, J. (1992), Breakpoint representation of rainfall, J. Appl. Meteorol., 31, 1514-1519.
    • (1992) J. Appl. Meteorol. , vol.31 , pp. 1514-1519
    • Sansom, J.1
  • 14
    • 0033611342 scopus 로고    scopus 로고
    • Large-scale spatial variability of rainfall through hidden semi-Markov models of breakpoint data
    • Sansom, J. (1999), Large-scale spatial variability of rainfall through hidden semi-Markov models of breakpoint data, J. Geophys. Res., 104(D24), 31,631-31,643.
    • (1999) J. Geophys. Res. , vol.104 , Issue.D24 , pp. 31631-31643
    • Sansom, J.1
  • 15
    • 34250371353 scopus 로고    scopus 로고
    • Climate change scenarios for New Zealand rainfall
    • Sansom, J., and J. A. Renwick (2007), Climate change scenarios for New Zealand rainfall, J. Appl. Meteorol. Climatol., 46, 573-590.
    • (2007) J. Appl. Meteorol. Climatol. , vol.46 , pp. 573-590
    • Sansom, J.1    Renwick, J.A.2
  • 16
    • 1642579497 scopus 로고    scopus 로고
    • Mesoscale spatial variation of rainfall through a hidden semi-Markov model of breakpoint data
    • doi:10.1029/2001JD001447
    • Sansom, J., and C. S. Thompson (2003), Mesoscale spatial variation of rainfall through a hidden semi-Markov model of breakpoint data, J. Geophys. Res., 108(D8), 8379, doi:10.1029/2001JD001447.
    • (2003) J. Geophys. Res. , vol.108 , Issue.D8 , pp. 8379
    • Sansom, J.1    Thompson, C.S.2
  • 17
    • 49249124038 scopus 로고    scopus 로고
    • Spatial and temporal variation of rainfall over New Zealand
    • doi:10.1029/ 2007JD009335
    • Sansom, J., and C. S. Thompson (2008), Spatial and temporal variation of rainfall over New Zealand, J. Geophys. Res., 113, D06109, doi:10.1029/ 2007JD009335.
    • (2008) J. Geophys. Res. , vol.113
    • Sansom, J.1    Thompson, C.S.2
  • 19
    • 1642431381 scopus 로고    scopus 로고
    • Fitting hidden semi-Markov models to breakpoint rainfall data
    • Sansom, J., and P. J. Thomson (2001), Fitting hidden semi-Markov models to breakpoint rainfall data, J. Appl. Probab., 38A, 152-167.
    • (2001) J. Appl. Probab. , vol.38 A , pp. 152-167
    • Sansom, J.1    Thomson, P.J.2
  • 20
    • 35148863058 scopus 로고    scopus 로고
    • On rainfall seasonality using a hidden semi-Markov model
    • doi:10.1029/ 2006JD008342
    • Sansom, J., and P. J. Thomson (2007), On rainfall seasonality using a hidden semi-Markov model, J. Geophys. Res., 112, D15105, doi:10.1029/ 2006JD008342.
    • (2007) J. Geophys. Res. , vol.112
    • Sansom, J.1    Thomson, P.J.2
  • 21
    • 0008091208 scopus 로고
    • Computing a probability distribution for the start of the rains from a Markov chain model for precipitation
    • Stern, R. D. (1982), Computing a probability distribution for the start of the rains from a Markov chain model for precipitation, J. Appl. Meteorol., 21, 420-423.
    • (1982) J. Appl. Meteorol. , vol.21 , pp. 420-423
    • Stern, R.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.