메뉴 건너뛰기




Volumn 4, Issue 3, 2010, Pages 441-450

Controllability of non-densely defined impulsive neutral functional differential systems with infinite delay in Banach spaces

Author keywords

Controllability; Impulsive differential equations; Infinite delay; Non densely defined; Schauder fixed point theorem

Indexed keywords

FUNCTIONAL DIFFERENTIAL SYSTEMS; HILLE-YOSIDA CONDITION; IMPULSIVE DIFFERENTIAL EQUATION; INFINITE DELAY; NON-DENSELY DEFINED; SCHAUDER FIXED-POINT THEOREM; SEMIGROUPS;

EID: 77955576393     PISSN: 1751570X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.nahs.2009.11.002     Document Type: Article
Times cited : (25)

References (27)
  • 2
    • 37049008497 scopus 로고    scopus 로고
    • Existence results for impulsive neutral functional differential equations with infinite delay
    • Chang Y.-K., Anguraj A., Mallika Arjunan M. Existence results for impulsive neutral functional differential equations with infinite delay. Nonlinear Analysis: Hybrid Systems 2008, 2(1):209-218.
    • (2008) Nonlinear Analysis: Hybrid Systems , vol.2 , Issue.1 , pp. 209-218
    • Chang, Y.-K.1    Anguraj, A.2    Mallika Arjunan, M.3
  • 3
    • 48749130593 scopus 로고    scopus 로고
    • Existence results for non-densely defined neutral impulsive differential inclusions with nonlocal conditions
    • Chang Y.-K., Anguraj A., Mallika Arjunan M. Existence results for non-densely defined neutral impulsive differential inclusions with nonlocal conditions. Journal of Applied Mathematics and Computation 2008, 28(1):79-91.
    • (2008) Journal of Applied Mathematics and Computation , vol.28 , Issue.1 , pp. 79-91
    • Chang, Y.-K.1    Anguraj, A.2    Mallika Arjunan, M.3
  • 4
    • 63449084084 scopus 로고    scopus 로고
    • Controllability of impulsive neutral functional differential inclusions with infinite delay in Banach spaces
    • Chang Y.-K., Anguraj A., Mallika Arjunan M. Controllability of impulsive neutral functional differential inclusions with infinite delay in Banach spaces. Chaos, Solitons & Fractals 2009, 39:4:1864-1876.
    • (2009) Chaos, Solitons & Fractals , pp. 1864-1876
    • Chang, Y.-K.1    Anguraj, A.2    Mallika Arjunan, M.3
  • 5
    • 33947161951 scopus 로고    scopus 로고
    • Controllability of impulsive functional differential systems with infinite delay in Banach spaces
    • Chang Y.-K. Controllability of impulsive functional differential systems with infinite delay in Banach spaces. Chaos, Solitons & Fractals 2007, 33(5):1601-1609.
    • (2007) Chaos, Solitons & Fractals , vol.33 , Issue.5 , pp. 1601-1609
    • Chang, Y.-K.1
  • 8
    • 30344442828 scopus 로고    scopus 로고
    • Controllability of impulsive functional differential systems in Banach spaces
    • Li M.L., Wang M.S., Zhang F.Q. Controllability of impulsive functional differential systems in Banach spaces. Chaos, Solitons & Fractals 2006, 29:175-181.
    • (2006) Chaos, Solitons & Fractals , vol.29 , pp. 175-181
    • Li, M.L.1    Wang, M.S.2    Zhang, F.Q.3
  • 9
    • 13444280088 scopus 로고    scopus 로고
    • Controllability of impulsive neutral functional differential inclusions with infinite delay
    • Liu B. Controllability of impulsive neutral functional differential inclusions with infinite delay. Nonlinear Analysis 2005, 60:1533-1552.
    • (2005) Nonlinear Analysis , vol.60 , pp. 1533-1552
    • Liu, B.1
  • 10
    • 36549044386 scopus 로고    scopus 로고
    • A unified approach to controllability analysis for hybrid systems
    • Yang Z.Y., Blanke M. A unified approach to controllability analysis for hybrid systems. Nonlinear Analysis: Hybrid Systems 2007, 1:212-222.
    • (2007) Nonlinear Analysis: Hybrid Systems , vol.1 , pp. 212-222
    • Yang, Z.Y.1    Blanke, M.2
  • 11
    • 0035536766 scopus 로고    scopus 로고
    • Controllability of nonlinear differential equations in Banach spaces with nonlocal conditions
    • Benchohra M., Ntouyas S.K. Controllability of nonlinear differential equations in Banach spaces with nonlocal conditions. Journal of Optimzation Theory and Applications 2001, 110(2):315-324.
    • (2001) Journal of Optimzation Theory and Applications , vol.110 , Issue.2 , pp. 315-324
    • Benchohra, M.1    Ntouyas, S.K.2
  • 12
    • 0042892233 scopus 로고    scopus 로고
    • Controllability of nonlinear integrodifferential inclusions in Banach spaces with nonlocal conditions
    • Benchohra M., Ntouyas S.K. Controllability of nonlinear integrodifferential inclusions in Banach spaces with nonlocal conditions. Fasciculi Mathematici 2001, 31:5-22.
    • (2001) Fasciculi Mathematici , vol.31 , pp. 5-22
    • Benchohra, M.1    Ntouyas, S.K.2
  • 14
    • 0037420942 scopus 로고    scopus 로고
    • Controllability of neutral functional differential systems in abstract spaces
    • Fu X. Controllability of neutral functional differential systems in abstract spaces. Applied Mathematics and Computation 2003, 141:281-296.
    • (2003) Applied Mathematics and Computation , vol.141 , pp. 281-296
    • Fu, X.1
  • 15
    • 33947695703 scopus 로고    scopus 로고
    • Controllability of non-densely defined neutral functional differential systems in abstract space
    • Fu X., Liu X. Controllability of non-densely defined neutral functional differential systems in abstract space. Chinese Annals of Mathematics 2007, 28 B(2):243-252.
    • (2007) Chinese Annals of Mathematics , vol.28 , Issue.2 B , pp. 243-252
    • Fu, X.1    Liu, X.2
  • 16
    • 4344574906 scopus 로고    scopus 로고
    • Controllability results for nondensely defined evolution differential equations with nonlocal conditions
    • Gatsori E.P. Controllability results for nondensely defined evolution differential equations with nonlocal conditions. Journal of Mathematical Analysis and Applications 2004, 297:194-211.
    • (2004) Journal of Mathematical Analysis and Applications , vol.297 , pp. 194-211
    • Gatsori, E.P.1
  • 17
    • 77955581100 scopus 로고    scopus 로고
    • Controllability of nondensely defined impulsive functional semilinear differential inclusions in Frechet spaces
    • Henderson J., Ouahab A. Controllability of nondensely defined impulsive functional semilinear differential inclusions in Frechet spaces. International Journal of Applied Mathematics & Statistics 2007, 9(J07):35-54.
    • (2007) International Journal of Applied Mathematics & Statistics , vol.9 , Issue.J07 , pp. 35-54
    • Henderson, J.1    Ouahab, A.2
  • 18
    • 67549086674 scopus 로고    scopus 로고
    • Controllability of impulsive neutral integrodifferential systems with infinite delay in Banach spaces
    • Park J.Y., Balachandran K., Arthi G. Controllability of impulsive neutral integrodifferential systems with infinite delay in Banach spaces. Nonlinear Analysis: Hybrid Systems 2009, 3(3):184-194.
    • (2009) Nonlinear Analysis: Hybrid Systems , vol.3 , Issue.3 , pp. 184-194
    • Park, J.Y.1    Balachandran, K.2    Arthi, G.3
  • 20
    • 25844517983 scopus 로고    scopus 로고
    • Controllability of neutral functional integrodifferential infinite delay systems in Banach spaces
    • Balachandran K., Ananthi E.R. Controllability of neutral functional integrodifferential infinite delay systems in Banach spaces. Taiwanese Journal of Mathematics 2004, 8:689-702.
    • (2004) Taiwanese Journal of Mathematics , vol.8 , pp. 689-702
    • Balachandran, K.1    Ananthi, E.R.2
  • 21
    • 1542507218 scopus 로고    scopus 로고
    • Controllability of abstract neutral functional differential systems with unbounded delay
    • Fu X.L. Controllability of abstract neutral functional differential systems with unbounded delay. Applied Mathematics and Computation 2004, 151:299-314.
    • (2004) Applied Mathematics and Computation , vol.151 , pp. 299-314
    • Fu, X.L.1
  • 22
    • 0035402888 scopus 로고    scopus 로고
    • Boundary value problems on the half-line with impulses with infinite delay
    • Yan B.Q. Boundary value problems on the half-line with impulses with infinite delay. Journal of Mathematical Analysis and Applications 2001, 259:94-114.
    • (2001) Journal of Mathematical Analysis and Applications , vol.259 , pp. 94-114
    • Yan, B.Q.1
  • 26
    • 0021578411 scopus 로고
    • An approach to nonlinear control problems using fixed point methods, degree theory and pseudo-inverses
    • Quinn M.D., Carmichael N. An approach to nonlinear control problems using fixed point methods, degree theory and pseudo-inverses. Numerical Functional Analysis and Optimization 1985, 7:197-219.
    • (1985) Numerical Functional Analysis and Optimization , vol.7 , pp. 197-219
    • Quinn, M.D.1    Carmichael, N.2
  • 27
    • 59849128649 scopus 로고    scopus 로고
    • Nonlocal nonlinear differential equation with measure of noncompactness in Banach spaces
    • Xue X. Nonlocal nonlinear differential equation with measure of noncompactness in Banach spaces. Nonlinear Analysis 2009, 70(7):2593-2601.
    • (2009) Nonlinear Analysis , vol.70 , Issue.7 , pp. 2593-2601
    • Xue, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.