메뉴 건너뛰기




Volumn 13, Issue 2, 2010, Pages 127-132

Hochschild kernel for locally bounded finite-dimensional representations of a connected reductive LIE group

Author keywords

Connected locally compact group; Hochschild universal kernel theorem; Locally bounded finite dimensional representation

Indexed keywords


EID: 77955536318     PISSN: 15987264     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (7)

References (14)
  • 1
    • 0040953614 scopus 로고
    • Lie groups simply isomorphic with no linear group
    • G. Birkhoff, Lie groups simply isomorphic with no linear group, Bull. Amer. Math. Soc. 42 (1936), 883-888.
    • (1936) Bull. Amer. Math. Soc. , vol.42 , pp. 883-888
    • Birkhoff, G.1
  • 2
    • 0013120053 scopus 로고
    • Faithful representations of Lie groups.I
    • M. Goto, Faithful representations of Lie groups. I, Math. Japonicae 1 (1948), 107-119
    • (1948) Math. Japonicae , vol.1 , pp. 107-119
    • Goto, M.1
  • 3
    • 77952049199 scopus 로고
    • II
    • II, Nagoya Math. J. 1 (1950), 91-107.
    • (1950) Nagoya Math. J. , vol.1 , pp. 91-107
  • 5
    • 84968492785 scopus 로고
    • The universal representation kernel of a Lie group
    • G. P. Hochschild, The universal representation kernel of a Lie group, Proc. Amer. Math. Soc. 11 (1960), 625-629.
    • (1960) Proc. Amer. Math. Soc. , vol.11 , pp. 625-629
    • Hochschild, G.P.1
  • 6
    • 33845681899 scopus 로고    scopus 로고
    • Van der Waerden's continuity theorem for the commutator subgroups of connected Lie groups and Mishchenko's conjecture
    • A.I. Shtern, Van der Waerden's continuity theorem for the commutator subgroups of connected Lie groups and Mishchenko's conjecture, Adv. Stud. Contemp. Math. (Kyungshang) 13 (2006), no.2, 143-158.
    • (2006) Adv. Stud. Contemp. Math. (Kyungshang) , vol.13 , Issue.2 , pp. 143-158
    • Shtern, A.I.1
  • 7
    • 62349133809 scopus 로고    scopus 로고
    • A version of the van der Waerden theorem and the proof of the Mishchenko conjecture for homomorphisms of locally compact groups
    • A.I. Shtern, A version of the van der Waerden theorem and the proof of the Mishchenko conjecture for homomorphisms of locally compact groups, Izv. Ross. Akad. Nauk Ser. Mat. 72 (2008), no.1, 183-224
    • (2008) Izv. Ross. Akad. Nauk Ser. Mat. , vol.72 , Issue.1 , pp. 183-224
    • Shtern, A.I.1
  • 9
    • 77952085076 scopus 로고    scopus 로고
    • Finite-dimensional quasirepresentations of connected Lie groups and Mishchenko's conjecture
    • A.I. Shtern, Finite-dimensional quasirepresentations of connected Lie groups and Mishchenko's conjecture, Fundam. Prikl. Mat. 13 (2007), no.7, 85-225
    • (2007) Fundam. Prikl. Mat. , vol.13 , Issue.7 , pp. 85-225
    • Shtern, A.I.1
  • 11
    • 70350345355 scopus 로고    scopus 로고
    • Freudenthal-Weil theorem for arbitrary embeddings of connected Lie groups in compact groups
    • A.I. Shtern, Freudenthal-Weil theorem for arbitrary embeddings of connected Lie groups in compact groups, Adv. Stud. Contemp. Math. (Kyungshang) 19 (2009), no.2, 157-164.
    • (2009) Adv. Stud. Contemp. Math. (Kyungshang) , vol.19 , Issue.2 , pp. 157-164
    • Shtern, A.I.1
  • 12
    • 77952089186 scopus 로고    scopus 로고
    • Applications of automatic continuity results to analogs of the Freudenthal-Weil and Hochschild theorems
    • A. I. Shtern, Applications of automatic continuity results to analogs of the Freudenthal-Weil and Hochschild theorems, Adv. Stud. Contemp. Math. (Kyungshang) 20 (2010), no.2, 203-212.
    • (2010) Adv. Stud. Contemp. Math. (Kyungshang) , vol.20 , Issue.2 , pp. 203-212
    • Shtern, A.I.1
  • 13
    • 0000805025 scopus 로고
    • Stetigkeitssätze für halbeinfache Liesche Gruppen
    • B. L. van der Waerden, Stetigkeitssätze für halbeinfache Liesche Gruppen, Math. Z. 36 (1933), 780-786.
    • (1933) Math. Z. , vol.36 , pp. 780-786
    • Van Der Waerden, B.L.1
  • 14
    • 0003429074 scopus 로고
    • V. S. Varadarajan, Lie Groups, Prentice-Hall, Inc., Englewood Cliffs, N. J.
    • V. S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1974.
    • (1974) Lie Algebras, and Their Representations


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.