메뉴 건너뛰기




Volumn 11, Issue 5, 2010, Pages 3512-3523

Nonlinear two-term time fractional diffusion-wave problem

Author keywords

Existenceuniqueness theorems; Nonlinear two term time fractional diffusion wave problem; Regularity of the solutions; Viscosity solutions

Indexed keywords

EXISTENCE UNIQUENESS; REGULARITY OF THE SOLUTIONS; TIME-FRACTIONAL DIFFUSION; VISCOSITY SOLUTIONS; WAVE PROBLEMS;

EID: 77955513205     PISSN: 14681218     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.nonrwa.2009.12.012     Document Type: Article
Times cited : (31)

References (24)
  • 1
    • 77956684069 scopus 로고    scopus 로고
    • Theory and Application of Fractional Differential Equations, North-Holland
    • Elsevier
    • A. Kilbas, H.M. Srivastava, and J.J. Trujillo Theory and Application of Fractional Differential Equations, North-Holland Mathematical Studies vol. 204 2006 Elsevier
    • (2006) Mathematical Studies , vol.204
    • Kilbas, A.1    Srivastava, H.M.2    Trujillo, J.J.3
  • 5
    • 67349088414 scopus 로고    scopus 로고
    • Monotone iterative method for initial value problem involving RiemannLouiville fractional derivatives
    • Z. Shuquin Monotone iterative method for initial value problem involving RiemannLouiville fractional derivatives Nonlinear Anal. 71 2009 2087 2093
    • (2009) Nonlinear Anal. , vol.71 , pp. 2087-2093
    • Shuquin, Z.1
  • 6
    • 70249121999 scopus 로고    scopus 로고
    • Existence of periodic solutions for a nonlinear fractional differential equation
    • Hindawi Publishing Corporation
    • M. Belmekki, J.J. Nieto, and R. Rodriguez-Lopez Existence of periodic solutions for a nonlinear fractional differential equation Boundary Value Problems vol. 2009 2009 Hindawi Publishing Corporation Article ID 324561
    • (2009) Boundary Value Problems , vol.2009
    • Belmekki, M.1    Nieto, J.J.2    Rodriguez-Lopez, R.3
  • 7
    • 58049138945 scopus 로고    scopus 로고
    • Some new existence results for fractional differential inclusions with boundary conditions
    • Y.-K. Chang, and J.J. Nieto Some new existence results for fractional differential inclusions with boundary conditions Math. Comput. Modelling 49 2009 605 609
    • (2009) Math. Comput. Modelling , vol.49 , pp. 605-609
    • Chang, Y.-K.1    Nieto, J.J.2
  • 8
    • 34247323827 scopus 로고    scopus 로고
    • Fractional differential equations as alternative models to nonlinear differential equations
    • DOI 10.1016/j.amc.2006.08.105, PII S0096300306011398
    • B. Bonilla, M. Rivero, L. Rodriguez-Germa, and J.J. Trujillo Fractional differential equations as alternative models to nonlinear differential equations Appl. Math. Comput. 187 2007 79 88 (Pubitemid 46635706)
    • (2007) Applied Mathematics and Computation , vol.187 , Issue.SPEC. ISS. , pp. 79-88
    • Bonilla, B.1    Rivero, M.2    Rodriguez-Germa, L.3    Trujillo, J.J.4
  • 9
    • 59849083895 scopus 로고    scopus 로고
    • Integral equations and initial value problems for nonlinear differential equations of fractional order
    • N. Kosmatov Integral equations and initial value problems for nonlinear differential equations of fractional order Nonlinear Anal. 70 2009 2521 2529
    • (2009) Nonlinear Anal. , vol.70 , pp. 2521-2529
    • Kosmatov, N.1
  • 10
    • 70449526839 scopus 로고    scopus 로고
    • An approach via fractional analysis to non-linearity induced by coarse-graining in space
    • G. Jumarie An approach via fractional analysis to non-linearity induced by coarse-graining in space Nonlinear Anal. RWA 11 1 2010 535 546
    • (2010) Nonlinear Anal. RWA , vol.11 , Issue.1 , pp. 535-546
    • Jumarie, G.1
  • 11
    • 77955510214 scopus 로고    scopus 로고
    • A fractional analog of the Duhamel's principle
    • S. Umarov, and E. Saydamatov A fractional analog of the Duhamel's principle Fract. Calc. Appl. Anal. 9 1 2006 44 57
    • (2006) Fract. Calc. Appl. Anal. , vol.9 , Issue.1 , pp. 44-57
    • Umarov, S.1    Saydamatov, E.2
  • 12
    • 58149289694 scopus 로고    scopus 로고
    • Existenceuniqueness result for a nonlinear n -terms fractional equation
    • M. Stojanovi Existenceuniqueness result for a nonlinear n -terms fractional equation J. Math. Anal. Appl. 353 2009 244 255
    • (2009) J. Math. Anal. Appl. , vol.353 , pp. 244-255
    • Stojanovi, M.1
  • 13
    • 77949264033 scopus 로고    scopus 로고
    • Cauchy-type problem for diffusion-wave equation with the RiemannLiouville partial derivative
    • A. Kilbas, J.J. Trujillo, and A.A. Voroshilov Cauchy-type problem for diffusion-wave equation with the RiemannLiouville partial derivative Fract. Calc. Appl. Anal. 8 4 2005 403 430
    • (2005) Fract. Calc. Appl. Anal. , vol.8 , Issue.4 , pp. 403-430
    • Kilbas, A.1    Trujillo, J.J.2    Voroshilov, A.A.3
  • 14
    • 34748907169 scopus 로고    scopus 로고
    • The two forms of fractional relaxation of distributed order
    • F. Mainardi, A. Mura, R. Gorenflo, and M. Stojanovi The two forms of fractional relaxation of distributed order J. Vib. Control 13 2007 9 10
    • (2007) J. Vib. Control , vol.13 , pp. 9-10
    • Mainardi, F.1    Mura, A.2    Gorenflo, R.3    Stojanovi, M.4
  • 16
    • 0001407424 scopus 로고    scopus 로고
    • The fundamental solution of the space-time fractional diffusion equation
    • F. Mainardi, Yu.F. Luchko, and G. Pagnini The fundamental solution of the space-time fractional diffusion equation Fract. Calc. Appl. Anal. 4 2 2001 153 192
    • (2001) Fract. Calc. Appl. Anal. , vol.4 , Issue.2 , pp. 153-192
    • Mainardi, F.1    Luchko ., Y.F.2    Pagnini, G.3
  • 17
    • 0003335688 scopus 로고
    • Differential and Integral Inequalities
    • Bellman Academic Press New York, London
    • V. Lakshmikantham, and S. Leela Bellman Differential and Integral Inequalities Mathematics in Science and Engineering vol. 55-I 1969 Academic Press New York, London
    • (1969) Mathematics in Science and Engineering , vol.551
    • Lakshmikantham, V.1    Leela, S.2
  • 18
    • 77955509136 scopus 로고    scopus 로고
    • http://en.wikipedia.org/wiki/Viscositysolution
  • 19
    • 84967708673 scopus 로고
    • User's guide to viscosity solutions of second order partial differential equations
    • M.G. Crandall, H. Ishii, and P.-L. Lions User's guide to viscosity solutions of second order partial differential equations Bull. Amer. Math. Soc. (NS) 27 1 1992 1 68
    • (1992) Bull. Amer. Math. Soc. (NS) , vol.27 , Issue.1 , pp. 1-68
    • Crandall, M.G.1    Ishii, H.2    Lions, P.-L.3
  • 22
    • 0002847893 scopus 로고    scopus 로고
    • Fractional calculus, integral and integro-differential equations of fractional order
    • R. Gorenflo, and F. Mainardi Fractional calculus, integral and integro-differential equations of fractional order A. Carpinteri, F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics 1997 Springer Wien 223 276
    • (1997) Fractals and Fractional Calculus in Continuum Mechanics , pp. 223-276
    • Gorenflo, R.1    Mainardi, F.2
  • 24
    • 84966215386 scopus 로고
    • A calculus approach to hyper-functions II
    • T. Matsuzawa A calculus approach to hyper-functions II Trans. Amer. Math. Soc. 313 2 1989 619 654
    • (1989) Trans. Amer. Math. Soc. , vol.313 , Issue.2 , pp. 619-654
    • Matsuzawa, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.