-
1
-
-
0000100729
-
-
Appendix B
-
Paulina Marian, Phys. Rev. A 45, 2044-2051 (1992), Appendix B.
-
(1992)
Phys. Rev. A
, vol.45
, pp. 2044-2051
-
-
Marian, P.1
-
3
-
-
84876997897
-
-
Ref. [2], Appendix A and Section IV
-
Ref. [2], Appendix A and Section IV.
-
-
-
-
5
-
-
0003864328
-
-
McGraw-Hill, New York, eq. (29)
-
A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions (McGraw-Hill, New York, 1953), Vol. 2, p. 177, eq. (29).
-
(1953)
Higher Transcendental Functions
, vol.2
, pp. 177
-
-
Erdélyi, A.1
Magnus, W.2
Oberhettinger, F.3
Tricomi, F.G.4
-
6
-
-
0004199721
-
-
Third Edition, McGraw-Hill, New York
-
Lars V. Ahlfors, Complex Analysis, Third Edition, (McGraw-Hill, New York, 1979), pp. 114-123.
-
(1979)
Complex Analysis
, pp. 114-123
-
-
Lars, V.1
Ahlfors2
-
7
-
-
77955490103
-
-
, Analytic Function Theory, Chelsea, New York
-
Einar Hille, Analytic Function Theory, Vol. 1, Second Edition (Chelsea, New York, 1982), pp. 175-182.
-
(1982)
Second Edition
, vol.1
, pp. 175-182
-
-
Hille, E.1
-
8
-
-
84876955756
-
-
Ref. [4], p. 280, § 144, eq. (23)
-
Ref. [4], p. 280, § 144, eq. (23).
-
-
-
-
9
-
-
84876957795
-
-
Ref. [4], p. 169, § 95, eq. (7)
-
Ref. [4], p. 169, § 95, eq. (7).
-
-
-
-
10
-
-
84877006159
-
-
Ref. [5], Vol. 2, p. 184, eq. (5)
-
Ref. [5], Vol. 2, p. 184, eq. (5).
-
-
-
-
11
-
-
84877002843
-
-
Ref. [5], Vol. 2, p. 174, eq. (6), where the limit should be read as limλ→0
-
Ref. [5], Vol. 2, p. 174, eq. (6), where the limit should be read as limλ→0.
-
-
-
-
12
-
-
84877006697
-
-
Ref. [5], Vol. 2, p. 186, eq. (30): there is a mistake that can be corrected by omitting unity in the l.h.s. of this equation
-
Ref. [5], Vol. 2, p. 186, eq. (30): there is a mistake that can be corrected by omitting unity in the l.h.s. of this equation.
-
-
-
-
13
-
-
84876985191
-
-
See Ref. [5], Vol. 2, p. 186, eq. (29): our eq. (3.14) is equivalent to this equation
-
See Ref. [5], Vol. 2, p. 186, eq. (29): our eq. (3.14) is equivalent to this equation.
-
-
-
-
14
-
-
84876996129
-
-
Ref. [5], Vol. 2, p. 184, eq. (6)
-
Ref. [5], Vol. 2, p. 184, eq. (6).
-
-
-
-
15
-
-
84876959786
-
-
Ref. [5], Vol. 2, p. 189, eq. (17)
-
Ref. [5], Vol. 2, p. 189, eq. (17).
-
-
-
-
16
-
-
84876971829
-
-
(α)0(t,u) and coincides with eq. (4.3) of the present work
-
(α)0(t,u) and coincides with eq. (4.3) of the present work.
-
-
-
-
17
-
-
84876985697
-
-
Ref. [4], p. 211, §119, eq. (9)
-
Ref. [4], p. 211, §119, eq. (9).
-
-
-
-
18
-
-
84876979708
-
-
Ref. [5], Vol. 2, p. 194, eq. (19)
-
Ref. [5], Vol. 2, p. 194, eq. (19).
-
-
-
-
19
-
-
84876993877
-
-
Ref. [4], p.197, § 111, eq. (1)
-
Ref. [4], p.197, § 111, eq. (1).
-
-
-
-
20
-
-
0004167330
-
-
Cambridge University Press, Cambridge, UK
-
George E. Andrews, Richard Askey, and Ranjan Roy, Special Functions (Cambridge University Press, Cambridge, UK, 2000), p. 306.
-
(2000)
Special Functions
, pp. 306
-
-
Andrews, G.E.1
Askey, R.2
Roy, R.3
-
21
-
-
84876963983
-
-
Ref. [20], p. 339
-
Ref. [20], p. 339.
-
-
-
-
22
-
-
84876970115
-
-
Ref. [5], Vol. 2, p. 194, eq. (22)
-
Ref. [5], Vol. 2, p. 194, eq. (22).
-
-
-
-
23
-
-
77955507212
-
The Confluent Hypergeometric Function
-
Springer, Berlin, 1969, eq. (12b). The original reference is: Ferdinand Gustav Mehler, Über die Entwicklung einer Funktion von beliebig vielen Variablen nach Laplaceschen Funktionen höherer Ordnung
-
Herbert Buchholz, The Confluent Hypergeometric Function (Springer, Berlin, 1969), p.147, eq. (12b). The original reference is: Ferdinand Gustav Mehler, Über die Entwicklung einer Funktion von beliebig vielen Variablen nach Laplaceschen Funktionen höherer Ordnung, J. reine angew. Math. 66, 161-176 (1866).
-
(1866)
J. Reine Angew. Math
, vol.66
, pp. 161-176
-
-
Buchholz, H.1
-
24
-
-
84876962715
-
-
Ref. [20], pp. 280-282
-
Ref. [20], pp. 280-282.
-
-
-
-
25
-
-
84876978672
-
-
Ref. [23], p. 147, eq. (12β)
-
Ref. [23], p. 147, eq. (12β).
-
-
-
-
26
-
-
84876973157
-
-
Ref. [5], Vol. 2, p. 193, eq. (2)
-
Ref. [5], Vol. 2, p. 193, eq. (2).
-
-
-
-
27
-
-
84876973559
-
-
Ref. [20], pp. 348-350. See the generating functions of some nonclassical orthogonal polynomials listed there
-
Ref. [20], pp. 348-350. See the generating functions of some nonclassical orthogonal polynomials listed there.
-
-
-
-
28
-
-
0004016061
-
-
Third Edition, John Wiley, New York, eq. (15.59)
-
Eugen Merzbacher, Quantum Mechanics, Third Edition, (John Wiley, New York, 1998), p. 352, eq. (15.59).
-
(1998)
Quantum Mechanics
, pp. 352
-
-
Merzbacher, E.1
-
29
-
-
0003495236
-
-
McGraw-Hill, New York, eq. (8-1). Our eq. (7.8) coincides with their explicit expression of the propagator. In order to derive it, the authors of the book point out several intermediate steps to be achieved: p. 28, eq. (2-9); p. 63, eq. (3-59); p. 73, eq. (3-93)
-
R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals, (McGraw-Hill, New York, 1965), p. 198, eq. (8-1). Our eq. (7.8) coincides with their explicit expression of the propagator. In order to derive it, the authors of the book point out several intermediate steps to be achieved: p. 28, eq. (2-9); p. 63, eq. (3-59); p. 73, eq. (3-93).
-
(1965)
Quantum Mechanics and Path Integrals
, pp. 198
-
-
Feynman, R.P.1
Hibbs, A.R.2
-
30
-
-
0004048494
-
Path Integrals in Quantum Mechanics
-
Second Edition, World Scientific, Singapore, eq. (2.148)
-
Hagen Kleinert, Path Integrals in Quantum Mechanics, Statistics, and Polymer Physics, Second Edition, (World Scientific, Singapore, 1995), p. 93, eq. (2.148).
-
(1995)
Statistics, and Polymer Physics
, pp. 93
-
-
Kleinert, H.1
|