-
1
-
-
33847198993
-
Discrete orthogonal polynomials. asymptotics and applications
-
Princeton: Princeton University Press
-
Baik, J., T. Kriecherbauer, K. T.-R. McLaughlin, and P. D. Miller. Discrete Orthogonal Polynomials. Asymptotics and Applications. Annals of Mathematics Studies 164. Princeton: Princeton University Press, 2007.
-
(2007)
Annals of Mathematics Studies
, vol.164
-
-
Baik, J.1
Kriecherbauer, T.2
McLaughlin, K.T.-R.3
Miller, P.D.4
-
2
-
-
0033244830
-
Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and the universality in the matrix model
-
Bleher, P., and A. Its. "Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and the universality in the matrix model." Annab of Mathematics 50 (1999): 185-266.
-
(1999)
Annab of Mathematics
, vol.50
, pp. 185-266
-
-
Bleher, P.1
Its, A.2
-
3
-
-
0001946143
-
Integrable operators
-
M. Sh. Birman's 70th Anniversary Collection, edited by V. Buslaev, M. Solomyak, and D. Yafaev. American Mathematical Society Translation Series 2, 159. Providence, RI: American Mathematical Society
-
Deift, P. "Integrable Operators." In Differential Operators and Spectral Theory: M. Sh. Birman's 70th Anniversary Collection, edited by V. Buslaev, M. Solomyak, and D. Yafaev. American Mathematical Society Translation Series 2, 159. Providence, RI: American Mathematical Society, 1999.
-
(1999)
Differential Operators and Spectral Theory
-
-
Deift, P.1
-
4
-
-
77955487711
-
Some open problems in random matrix theory and the theory of integrable systems
-
Deift, P. "Some open problems in random matrix theory and the theory of integrable systems." Contemporary Mathematics 458 (2008): 419-30.
-
(2008)
Contemporary Mathematics
, vol.458
, pp. 419-430
-
-
Deift, P.1
-
5
-
-
34247509776
-
Universality at the edge of the spectrum for unitary, orthogonal and symplectic ensembles of random matrices
-
Deift, P., and D. Gioev. "Universality at the edge of the spectrum for unitary, orthogonal and symplectic ensembles of random matrices." Communications on Pure and Applied Mathematics 60 (2007): 867-910.
-
(2007)
Communications on Pure and Applied Mathematics
, vol.60
, pp. 867-910
-
-
Deift, P.1
Gioev, D.2
-
6
-
-
0033440723
-
Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory
-
Deift, P., T. Kriecherbauer, K. T-R. McLaughlin, S. Venakides, and X. Zhou. "Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory." Communications on Pure and Applied Mathematics 52 (1999): 1335-1425.
-
(1999)
Communications on Pure and Applied Mathematics
, vol.52
, pp. 1335-1425
-
-
Deift, P.1
Kriecherbauer, T.2
McLaughlin, K.T.-R.3
Venakides, S.4
Zhou, X.5
-
7
-
-
0033459230
-
Strong asymptotics of orthogonal polynomials with respect to exponential weights
-
Deift, P., T. Kriecherbauer, K. T-R. McLaughlin, S. Venakides, and X. Zhou. "Strong asymptotics of orthogonal polynomials with respect to exponential weights." Communications on Pure and Applied Mathematics 52 (1999): 1491-1552.
-
(1999)
Communications on Pure and Applied Mathematics
, vol.52
, pp. 1491-1552
-
-
Deift, P.1
Kriecherbauer, T.2
McLaughlin, K.T.-R.3
Venakides, S.4
Zhou, X.5
-
8
-
-
1842665167
-
New results in small dispersion KdV by an extension of the steepest descent method for Riemann-Hilbert problems
-
Deift, P., S. Venakides, and X. Zhou. "New results in small dispersion KdV by an extension of the steepest descent method for Riemann-Hilbert problems." International Mathematics Research Notices 6 (1997): 285-99.
-
(1997)
International Mathematics Research Notices
, vol.6
, pp. 285-299
-
-
Deift, P.1
Venakides, S.2
Zhou, X.3
-
9
-
-
0001525213
-
A steepest descent method for oscillatory Riemann-Hilbert problems: Asymptotics for the mKdV equation
-
Deift, P., and X. Zhou. "A steepest descent method for oscillatory Riemann-Hilbert problems: asymptotics for the mKdV equation." Annals of Mathematics 137 (1993): 295-368.
-
(1993)
Annals of Mathematics
, vol.137
, pp. 295-368
-
-
Deift, P.1
Zhou, X.2
-
10
-
-
0000533283
-
Discrete Painlevé equations and their appearance in quantum gravity
-
Fokas, A., A. Its, and A. V. Kitaev. "Discrete Painlevé equations and their appearance in quantum gravity." Communications in Mathematical Physics 142 (1991): 313-44.
-
(1991)
Communications in Mathematical Physics
, vol.142
, pp. 313-344
-
-
Fokas, A.1
Its, A.2
Kitaev, A.V.3
-
11
-
-
85009055469
-
Semiclassical soliton ensembles for the focusing nonlinear schrödinger equation
-
Princeton: Princeton University Press
-
Kamvissis, S., K. T-R. McLaughlin, and P. D. Miller. Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation. Annals of Mathematics Studies 154. Princeton: Princeton University Press, 2003.
-
(2003)
Annals of Mathematics Studies
, vol.154
-
-
Kamvissis, S.1
McLaughlin, K.T.-R.2
Miller, P.D.3
-
13
-
-
4444305949
-
The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on [-1,1]
-
Kuijlaars, A. B. J., K. T-R. McLaughlin, W. Van Assche, and M. Vanlessen. "The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on [-1,1]," Advances in Mathematics 188 (2004): 337-98.
-
(2004)
Advances in Mathematics
, vol.188
, pp. 337-398
-
-
Kuijlaars, A.B.J.1
McLaughlin, K.T.-R.2
Van Assche, W.3
Vanlessen, M.4
-
14
-
-
50349090048
-
Universality limits in the bulk for varying measures
-
(forthcoming)
-
Levin, E., and D. Lubinsky. "Universality limits in the bulk for varying measures." Advances in Mathematics (forthcoming).
-
Advances in Mathematics
-
-
Levin, E.1
Lubinsky, D.2
-
15
-
-
33749525149
-
The 9 steepest descent method and the asymptotic behavior of polynomials orthogonal on the unit circle with fixed and exponentially varying nonanalytic weights
-
McLaughlin, K. T.-R., and P. D. Miller, "The 9 steepest descent method and the asymptotic behavior of polynomials orthogonal on the unit circle with fixed and exponentially varying nonanalytic weights." International Mathematics Research Papers 2006 (2006): 1-77.
-
(2006)
International Mathematics Research Papers
, vol.2006
, pp. 1-77
-
-
McLaughlin, K.T.-R.1
Miller, P.D.2
-
16
-
-
0004163930
-
-
2nd ed. San Diego, CA: Academic Press
-
Mehta, M. L. Random Matrices, 2nd ed. San Diego, CA: Academic Press, 1991.
-
(1991)
Random Matrices
-
-
Mehta, M.L.1
-
17
-
-
0001358033
-
On the density of eigenvalues of a random matrix
-
Mehta, M. L., and M. Gaudin. "On the density of eigenvalues of a random matrix." Nuclear Physics 18 (1960): 420-27.
-
(1960)
Nuclear Physics
, vol.18
, pp. 420-427
-
-
Mehta, M.L.1
Gaudin, M.2
-
18
-
-
77953132376
-
Applied asymptotic analysis
-
Providence, RI: American Mathematical Society
-
Miller, P. D. Applied Asymptotic Analysis. Graduate Studies in Mathematics 75. Providence, RI: American Mathematical Society, 2006.
-
(2006)
Graduate Studies in Mathematics
, vol.75
-
-
Miller, P.D.1
-
19
-
-
0030684834
-
Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles
-
Pastur, L., and M. Shcherbina. "Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles." Journal of Statistical Physics 86 (1997): 109-47.
-
(1997)
Journal of Statistical Physics
, vol.86
, pp. 109-147
-
-
Pastur, L.1
Shcherbina, M.2
-
20
-
-
3042783916
-
On the edge universality of the local eigenvalue statistics of matrix models
-
Pastur, L., and M. Shcherbina. "On the edge universality of the local eigenvalue statistics of matrix models." Matematicheskaya Fizika, Analiz, Geometriya 10 (2003): 335-65.
-
(2003)
Matematicheskaya Fizika, Analiz, Geometriya
, vol.10
, pp. 335-365
-
-
Pastur, L.1
Shcherbina, M.2
-
21
-
-
36649018694
-
Bulk universality and related properties of Hermitian matrix models
-
Pastur, L., and M. Shcherbina. "Bulk universality and related properties of Hermitian matrix models." Journal of Statistical Physics 130 (2008): 205-50.
-
(2008)
Journal of Statistical Physics
, vol.130
, pp. 205-250
-
-
Pastur, L.1
Shcherbina, M.2
|