메뉴 건너뛰기




Volumn 73, Issue 2, 2010, Pages 283-289

Fixed point theorems for the sum of two weakly sequentially continuous mappings

Author keywords

Krasnosel'skii's fixed point theorem; LeraySchauder fixed point theorem; Measure of weak noncompactness

Indexed keywords

CONTINUOUS MAPPINGS; FIXED POINT THEOREMS; KRASNOSEL'SKII'S FIXED POINT THEOREM; LERAY-SCHAUDER FIXED POINT THEOREM; NONCOMPACTNESS; WEAK TOPOLOGIES;

EID: 77955418581     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.na.2010.03.009     Document Type: Article
Times cited : (24)

References (21)
  • 2
  • 3
    • 0043014934 scopus 로고    scopus 로고
    • Krasnosel'skii's fixed point theorem for weakly continuous maps
    • C.S. Barroso Krasnosel'skii's fixed point theorem for weakly continuous maps Nonlinear Anal. 55 2003 25 31
    • (2003) Nonlinear Anal. , vol.55 , pp. 25-31
    • Barroso, C.S.1
  • 4
    • 10644227629 scopus 로고    scopus 로고
    • A topological and geometric approach to fixed points results for sum of operators and applications
    • C.S. Barroso, and E.V. Teixeira A topological and geometric approach to fixed points results for sum of operators and applications Nonlinear Anal. 60 4 2005 625 650
    • (2005) Nonlinear Anal. , vol.60 , Issue.4 , pp. 625-650
    • Barroso, C.S.1    Teixeira, E.V.2
  • 5
    • 0008332593 scopus 로고    scopus 로고
    • A fixed point theorem of Krasnoselskii
    • T.A. Burton A fixed point theorem of Krasnoselskii Appl. Math. Lett. 11 1998 85 88
    • (1998) Appl. Math. Lett. , vol.11 , pp. 85-88
    • Burton, T.A.1
  • 6
    • 0036568039 scopus 로고    scopus 로고
    • Krasnoselskii's fixed point theorem and stability
    • T.A. Burton, and T. Furumochi Krasnoselskii's fixed point theorem and stability Nonlinear Anal. 49 2002 445 454
    • (2002) Nonlinear Anal. , vol.49 , pp. 445-454
    • Burton, T.A.1    Furumochi, T.2
  • 7
    • 0040676467 scopus 로고    scopus 로고
    • A fixed point theorem of KrasnoselskiiSchaefer type
    • T.A. Burton, and C. Kirk A fixed point theorem of KrasnoselskiiSchaefer type Math. Nachr. 1998 23 31
    • (1998) Math. Nachr. , pp. 23-31
    • Burton, T.A.1    Kirk, C.2
  • 8
    • 84972567860 scopus 로고
    • Fixed points and stability for a sum of two operators in locally convex spaces
    • G.L. Cain Jr., and M.Z. Nashed Fixed points and stability for a sum of two operators in locally convex spaces Pacific J. Math. 39 3 1971 581 592
    • (1971) Pacific J. Math. , vol.39 , Issue.3 , pp. 581-592
    • Cain Jr., G.L.1    Nashed, M.Z.2
  • 9
    • 3042571710 scopus 로고    scopus 로고
    • On a fixed point theorem of KrasnoselskiiSchaefer type
    • B.C. Dhage On a fixed point theorem of KrasnoselskiiSchaefer type Electron. J. Qual. Theory Differ. Equ. 6 2002 1 9
    • (2002) Electron. J. Qual. Theory Differ. Equ. , Issue.6 , pp. 1-9
    • Dhage, B.C.1
  • 10
    • 30344445716 scopus 로고    scopus 로고
    • Some fixed point theorems of the Schauder and Krasnosel'skii type and application to nonlinear transport equations
    • K. Latrach, M.A. Taoudi, and A. Zeghal Some fixed point theorems of the Schauder and Krasnosel'skii type and application to nonlinear transport equations J. Differential Equations 221 1 2006 256 271
    • (2006) J. Differential Equations , vol.221 , Issue.1 , pp. 256-271
    • Latrach, K.1    Taoudi, M.A.2    Zeghal, A.3
  • 11
    • 33847110662 scopus 로고    scopus 로고
    • 1-spaces
    • K. Latrach, and M.A. Taoudi Existence results for a generalized nonlinear Hammerstein equation on L 1 -spaces Nonlinear Anal. 66 2007 2325 2333
    • (2007) Nonlinear Anal. , vol.66 , pp. 2325-2333
    • Latrach, K.1    Taoudi, M.A.2
  • 12
    • 0000953318 scopus 로고
    • Fixed points of condensing functions
    • S. Reich Fixed points of condensing functions J. Math. Anal. Appl. 41 1973 460 467
    • (1973) J. Math. Anal. Appl. , vol.41 , pp. 460-467
    • Reich, S.1
  • 13
    • 71749107089 scopus 로고    scopus 로고
    • Krasnosel'skii type fixed point theorems under weak topology features
    • M.A. Taoudi Krasnosel'skii type fixed point theorems under weak topology features Nonlinear Anal. 72 2010 478 482
    • (2010) Nonlinear Anal. , vol.72 , pp. 478-482
    • Taoudi, M.A.1
  • 14
    • 34250096625 scopus 로고
    • On measures of weak noncompactness
    • J. Banas, and J. Rivero On measures of weak noncompactness Ann. Mat. Pura Appl. 151 1988 213 224
    • (1988) Ann. Mat. Pura Appl. , vol.151 , pp. 213-224
    • Banas, J.1    Rivero, J.2
  • 15
    • 0000690785 scopus 로고
    • On a property of the unit sphere in Banach spaces
    • F.S. De Blasi On a property of the unit sphere in Banach spaces Bull. Math. Soc. Sci. Math. Roumanie 21 1977 259 262
    • (1977) Bull. Math. Soc. Sci. Math. Roumanie , vol.21 , pp. 259-262
    • De Blasi, F.S.1
  • 16
    • 0032033439 scopus 로고    scopus 로고
    • Fixed point theory for weakly sequentially continuous mappings
    • D. O'Regan Fixed point theory for weakly sequentially continuous mappings Math. Comput. Modelling 27 5 1998 1 14
    • (1998) Math. Comput. Modelling , vol.27 , Issue.5 , pp. 1-14
    • O'Regan, D.1
  • 17
    • 22044457335 scopus 로고    scopus 로고
    • Fixed point theory for weakly contractive maps with applications to operator inclusions in Banach spaces relative to the weak topology
    • D. O'Regan Fixed point theory for weakly contractive maps with applications to operator inclusions in Banach spaces relative to the weak topology Z. Anal. Anwend. 17 1998 282 296
    • (1998) Z. Anal. Anwend. , vol.17 , pp. 282-296
    • O'Regan, D.1
  • 20
    • 0001054041 scopus 로고
    • A fixed point theorem for sequentially continuous mappings with applications to ordinary differential equations
    • O. Arino, S. Gautier, and J.P. Penot A fixed point theorem for sequentially continuous mappings with applications to ordinary differential equations Funkc. Ekvacial 27 1984 273 279
    • (1984) Funkc. Ekvacial , vol.27 , pp. 273-279
    • Arino, O.1    Gautier, S.2    Penot, J.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.