-
1
-
-
29544433709
-
The displacement map associated to polynomial unfoldings of planar Hamiltonian vector fields
-
L. Gavrilov, and I.D. Iliev The displacement map associated to polynomial unfoldings of planar Hamiltonian vector fields Amer. J. Math. 127 6 2005 1153 1190
-
(2005)
Amer. J. Math.
, vol.127
, Issue.6
, pp. 1153-1190
-
-
Gavrilov, L.1
Iliev, I.D.2
-
2
-
-
0002383108
-
Cyclicity of planar homoclinic loops and quadratic integrable systems
-
M. Han Cyclicity of planar homoclinic loops and quadratic integrable systems Sci. China Ser. A40 1997 1247 1258
-
(1997)
Sci. China Ser.
, vol.40
, pp. 1247-1258
-
-
Han, M.1
-
3
-
-
54049134619
-
Bifurcation theory of limit cycles of planar systems
-
M. Han Bifurcation theory of limit cycles of planar systems A. Canada, P. Drabek, A. Fonda, Handbook of Differential Equations Ordinary Differential Equations vol. 3 2006 Elsevier
-
(2006)
Handbook of Differential Equations
, vol.3
-
-
Han, M.1
-
4
-
-
59049098428
-
Limit cycle bifurcations in near-Hamiltonian systems by perturbing a nilpotent center
-
M. Han, J. Jiang, and H. Zhu Limit cycle bifurcations in near-Hamiltonian systems by perturbing a nilpotent center Int. J. Bifurcation Chaos 18 10 2008 3013 3027
-
(2008)
Int. J. Bifurcation Chaos
, vol.18
, Issue.10
, pp. 3013-3027
-
-
Han, M.1
Jiang, J.2
Zhu, H.3
-
5
-
-
0033165088
-
Cyclicity 1 and 2 conditions for a 2-polycycle of integrable systems on the plane
-
M. Han, and Z. Zhang Cyclicity 1 and 2 conditions for a 2-polycycle of integrable systems on the plane J. Differen. Eqns. 155 1999 245 261
-
(1999)
J. Differen. Eqns.
, vol.155
, pp. 245-261
-
-
Han, M.1
Zhang, Z.2
-
6
-
-
0347466739
-
Linear estimate for the number of zeros of Abelian integrals with cubic Hamiltonians
-
PII S0951771598884843
-
E. Horozov, and I.D. Iliev Linear estimate for the number of zeros of Abelian integrals with cubic Hamiltonians Nonlinearity 11 1998 1521 1537 (Pubitemid 128406182)
-
(1998)
Nonlinearity
, vol.11
, Issue.6
, pp. 1521-1537
-
-
Horozov, E.1
Iliev, I.D.2
-
7
-
-
0001722685
-
Higher-order Melnikov functions for degenerate cubic Hamiltonians
-
I.D. Iliev Higher-order Melnikov functions for degenerate cubic Hamiltonians Adv. Differen. Eqns. 1 4 1996 689 708
-
(1996)
Adv. Differen. Eqns.
, vol.1
, Issue.4
, pp. 689-708
-
-
Iliev, I.D.1
-
8
-
-
0037246396
-
Hilbert's 16th problem and bifurcations of planar polynomial vector fields
-
J. Li Hilbert's 16th problem and bifurcations of planar polynomial vector fields Int. J. Bifurcation Chaos 13 1 2003 47 106
-
(2003)
Int. J. Bifurcation Chaos
, vol.13
, Issue.1
, pp. 47-106
-
-
Li, J.1
-
9
-
-
84896693675
-
Some lower bounds for H (n ) in Hilbert's 16th problem
-
J. Li, H. Chan, and K. Chung Some lower bounds for H (n ) in Hilbert's 16th problem Qual. Theory Dyn. Syst. 3 2003 345 360
-
(2003)
Qual. Theory Dyn. Syst.
, vol.3
, pp. 345-360
-
-
Li, J.1
Chan, H.2
Chung, K.3
-
10
-
-
33745295874
-
Bifurcations of limit cycles in a Z 2-equivariant planar polynimial vector field of degree 7
-
J. Li, M. Zhang, and S. Li Bifurcations of limit cycles in a Z 2 -equivariant planar polynimial vector field of degree 7 Int. J. Bifurcation Chaos 16 4 2006 925 943
-
(2006)
Int. J. Bifurcation Chaos
, vol.16
, Issue.4
, pp. 925-943
-
-
Li, J.1
Zhang, M.2
Li, S.3
-
13
-
-
0001304970
-
Algebraic and geometric aspects of the theory of polynomial vector fields
-
D. Schlomiuk Algebraic and geometric aspects of the theory of polynomial vector fields D. Schlomiuk, Bifurcations and Periodic Orbits of Vector Fields NATO ASI Series C vol. 408 1993 Kluwer Academic London 429 467
-
(1993)
NATO ASI Series C
, vol.408
, pp. 429-467
-
-
Schlomiuk, D.1
-
14
-
-
20444455852
-
Bifurcation of limit cycles in a quintic Hamiltonian system under a sixth-order perturbation
-
S. Wang, and P. Yu Bifurcation of limit cycles in a quintic Hamiltonian system under a sixth-order perturbation Chaos, Soliton Fract 26 5 2005 1317 1335
-
(2005)
Chaos, Soliton Fract
, vol.26
, Issue.5
, pp. 1317-1335
-
-
Wang, S.1
Yu, P.2
-
15
-
-
33745121921
-
Existence of 121 limit cycles in a perturbed planar polynomial Hamiltonian vector field of degree 11
-
S. Wang, and P. Yu Existence of 121 limit cycles in a perturbed planar polynomial Hamiltonian vector field of degree 11 Chaos, Soliton Fractals 30 3 2006 606 621
-
(2006)
Chaos, Soliton Fractals
, vol.30
, Issue.3
, pp. 606-621
-
-
Wang, S.1
Yu, P.2
|