-
1
-
-
33748067017
-
-
10.1103/PhysRev.115.485
-
Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959). 10.1103/PhysRev.115. 485
-
(1959)
Phys. Rev.
, vol.115
, pp. 485
-
-
Aharonov, Y.1
Bohm, D.2
-
2
-
-
0000506970
-
-
10.1103/PhysRevLett.54.2696;
-
R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz, Phys. Rev. Lett. 54, 2696 (1985) 10.1103/PhysRevLett.54.2696
-
(1985)
Phys. Rev. Lett.
, vol.54
, pp. 2696
-
-
Webb, R.A.1
Washburn, S.2
Umbach, C.P.3
Laibowitz, R.B.4
-
3
-
-
0000124636
-
-
10.1103/PhysRevLett.58.2814;
-
G. Timp, A. M. Chang, J. E. Cunningham, T. Y. Chang, P. Mankiewich, R. Behringer, and R. E. Howard, Phys. Rev. Lett. 58, 2814 (1987) 10.1103/PhysRevLett.58.2814
-
(1987)
Phys. Rev. Lett.
, vol.58
, pp. 2814
-
-
Timp, G.1
Chang, A.M.2
Cunningham, J.E.3
Chang, T.Y.4
Mankiewich, P.5
Behringer, R.6
Howard, R.E.7
-
4
-
-
0038271825
-
-
10.1103/PhysRevLett.90.186801;
-
M. Bayer, M. Korkusinski, P. Hawrylak, T. Gutbrod, M. Michel, and A. Forchel, Phys. Rev. Lett. 90, 186801 (2003) 10.1103/PhysRevLett.90.186801
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 186801
-
-
Bayer, M.1
Korkusinski, M.2
Hawrylak, P.3
Gutbrod, T.4
Michel, M.5
Forchel, A.6
-
5
-
-
54449089958
-
-
10.1021/nl801689t
-
S. Gustavsson, R. Leturcq, M. Studer, T. Ihn, and K. Ensslin, Nano Lett. 8, 2547 (2008). 10.1021/nl801689t
-
(2008)
Nano Lett.
, vol.8
, pp. 2547
-
-
Gustavsson, S.1
Leturcq, R.2
Studer, M.3
Ihn, T.4
Ensslin, K.5
-
6
-
-
0346216031
-
-
10.1103/PhysRevLett.91.206802
-
A. Fuhrer, T. Ihn, K. Ensslin, W. Wegscheider, and M. Bichler, Phys. Rev. Lett. 91, 206802 (2003). 10.1103/PhysRevLett.91.206802
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 206802
-
-
Fuhrer, A.1
Ihn, T.2
Ensslin, K.3
Wegscheider, W.4
Bichler, M.5
-
7
-
-
0037438115
-
-
10.1103/PhysRevB.67.033307
-
W. G. van der Wiel, Yu. V. Nazarov, S. De Franceschi, T. Fujisawa, J. M. Elzerman, E. W. G. M. Huizeling, S. Tarucha, and L. P. Kouwenhoven, Phys. Rev. B 67, 033307 (2003). 10.1103/PhysRevB.67.033307
-
(2003)
Phys. Rev. B
, vol.67
, pp. 033307
-
-
Van Der Wiel, W.G.1
Nazarov, Yu.V.2
De Franceschi, S.3
Fujisawa, T.4
Elzerman, J.M.5
Huizeling, E.W.G.M.6
Tarucha, S.7
Kouwenhoven, L.P.8
-
8
-
-
0037595525
-
-
10.1103/PhysRevLett.90.196601
-
U. F. Keyser, C. Fühner, S. Borck, R. J. Haug, M. Bichler, G. Abstreiter, and W. Wegscheider, Phys. Rev. Lett. 90, 196601 (2003). 10.1103/PhysRevLett.90.196601
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 196601
-
-
Keyser, U.F.1
Fühner, C.2
Borck, S.3
Haug, R.J.4
Bichler, M.5
Abstreiter, G.6
Wegscheider, W.7
-
9
-
-
67649497908
-
-
10.1103/PhysRevB.79.195443
-
E. Strambini, V. Piazza, G. Biasiol, L. Sorba, and F. Beltram, Phys. Rev. B 79, 195443 (2009). 10.1103/PhysRevB.79.195443
-
(2009)
Phys. Rev. B
, vol.79
, pp. 195443
-
-
Strambini, E.1
Piazza, V.2
Biasiol, G.3
Sorba, L.4
Beltram, F.5
-
10
-
-
27144554177
-
-
10.1103/PhysRevLett.95.126603
-
R. Leturcq, L. Schmid, K. Ensslin, Y. Meir, D. C. Driscoll, and A. C. Gossard, Phys. Rev. Lett. 95, 126603 (2005). 10.1103/PhysRevLett.95.126603
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 126603
-
-
Leturcq, R.1
Schmid, L.2
Ensslin, K.3
Meir, Y.4
Driscoll, D.C.5
Gossard, A.C.6
-
11
-
-
69649107963
-
-
10.1103/PhysRevLett.93.066802
-
M. Sigrist, A. Fuhrer, T. Ihn, K. Ensslin, S. E. Ulloa, W. Wegscheider, and M. Bichler, Phys. Rev. Lett. 93, 066802 (2004). 10.1103/PhysRevLett.93. 066802
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 066802
-
-
Sigrist, M.1
Fuhrer, A.2
Ihn, T.3
Ensslin, K.4
Ulloa, S.E.5
Wegscheider, W.6
Bichler, M.7
-
12
-
-
3343004181
-
-
10.1103/PhysRevLett.74.4047
-
A. Yacoby, M. Heiblum, D. Mahalu, and Hadas Shtrikman, Phys. Rev. Lett. 74, 4047 (1995). 10.1103/PhysRevLett.74.4047
-
(1995)
Phys. Rev. Lett.
, vol.74
, pp. 4047
-
-
Yacoby, A.1
Heiblum, M.2
Mahalu, D.3
Shtrikman, H.4
-
13
-
-
0032568026
-
-
10.1038/36057
-
E. Buks, R. Schuster, M. Heiblum, D. Mahalu, and V. Umansky, Nature (London) 391, 871 (1998). 10.1038/36057
-
(1998)
Nature (London)
, vol.391
, pp. 871
-
-
Buks, E.1
Schuster, R.2
Heiblum, M.3
Mahalu, D.4
Umansky, V.5
-
14
-
-
42749103936
-
-
10.1103/PhysRevB.69.241302
-
L. Meier, A. Fuhrer, T. Ihn, K. Ensslin, W. Wegscheider, and M. Bichler, Phys. Rev. B 69, 241302 (R) (2004). 10.1103/PhysRevB.69.241302
-
(2004)
Phys. Rev. B
, vol.69
, pp. 241302
-
-
Meier, L.1
Fuhrer, A.2
Ihn, T.3
Ensslin, K.4
Wegscheider, W.5
Bichler, M.6
-
15
-
-
54449089569
-
-
10.1103/PhysRevB.78.155309
-
S. Gustavsson, M. Studer, R. Leturcq, T. Ihn, K. Ensslin, D. C. Driscoll, and A. C. Gossard, Phys. Rev. B 78, 155309 (2008). 10.1103/PhysRevB.78.155309
-
(2008)
Phys. Rev. B
, vol.78
, pp. 155309
-
-
Gustavsson, S.1
Studer, M.2
Leturcq, R.3
Ihn, T.4
Ensslin, K.5
Driscoll, D.C.6
Gossard, A.C.7
-
16
-
-
0035950072
-
-
10.1038/35101552
-
A. Fuhrer, S. Lüscher, T. Ihn, T. Heinzel, K. Ensslin, W. Wegscheider, and M. Bichler, Nature (London) 413, 822 (2001). 10.1038/35101552
-
(2001)
Nature (London)
, vol.413
, pp. 822
-
-
Fuhrer, A.1
Lüscher, S.2
Ihn, T.3
Heinzel, T.4
Ensslin, K.5
Wegscheider, W.6
Bichler, M.7
-
17
-
-
0037949165
-
-
10.1016/S1386-9477(02)00592-1
-
T. Ihn, A. Fuhrer, T. Heinzel, K. Ensslin, W. Wegscheider, and M. Bichler, Physica E 16, 83 (2003). 10.1016/S1386-9477(02)00592-1
-
(2003)
Physica e
, vol.16
, pp. 83
-
-
Ihn, T.1
Fuhrer, A.2
Heinzel, T.3
Ensslin, K.4
Wegscheider, W.5
Bichler, M.6
-
20
-
-
77955379924
-
-
We made several simulations for wider overlapping parts, i.e., for 200 nm, and did not find any change in results.
-
We made several simulations for wider overlapping parts, i.e., for 200 nm, and did not find any change in results.
-
-
-
-
21
-
-
58049084866
-
-
10.1103/PhysRevB.78.245306
-
T. Chwiej and B. Szafran, Phys. Rev. B 78, 245306 (2008). 10.1103/PhysRevB.78.245306
-
(2008)
Phys. Rev. B
, vol.78
, pp. 245306
-
-
Chwiej, T.1
Szafran, B.2
-
22
-
-
77955367858
-
-
We checked that results obtained for potential step ΔV=0.19 meV (negatively charged dot) when the range of the Coulomb interaction between particles is limited to 600 nm were identical with those for ΔV=0.28 meV. It results from the fact that in both cases the same low-energy part of the electron wave packet reflects due to Coulomb interaction and does not enter the ring at all.
-
We checked that results obtained for potential step Δ V = 0.19 meV (negatively charged dot) when the range of the Coulomb interaction between particles is limited to 600 nm were identical with those for Δ V = 0.28 meV. It results from the fact that in both cases the same low-energy part of the electron wave packet reflects due to Coulomb interaction and does not enter the ring at all.
-
-
-
-
23
-
-
29644443711
-
-
10.1103/PhysRevB.72.165301
-
B. Szafran and F. M. Peeters, Phys. Rev. B 72, 165301 (2005). 10.1103/PhysRevB.72.165301
-
(2005)
Phys. Rev. B
, vol.72
, pp. 165301
-
-
Szafran, B.1
Peeters, F.M.2
-
24
-
-
61549138722
-
-
10.1103/PhysRevB.79.085305
-
T. Chwiej and B. Szafran, Phys. Rev. B 79, 085305 (2009). 10.1103/PhysRevB.79.085305
-
(2009)
Phys. Rev. B
, vol.79
, pp. 085305
-
-
Chwiej, T.1
Szafran, B.2
-
25
-
-
70350721862
-
-
10.1103/PhysRevB.80.125331
-
A. Chaves, G. A. Farias, F. M. Peeters, and B. Szafran, Phys. Rev. B 80, 125331 (2009). 10.1103/PhysRevB.80.125331
-
(2009)
Phys. Rev. B
, vol.80
, pp. 125331
-
-
Chaves, A.1
Farias, G.A.2
Peeters, F.M.3
Szafran, B.4
|