-
1
-
-
33745891586
-
Feature Extraction, Foundations and Applications
-
Springer, Heidelberg
-
Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.: Feature Extraction, Foundations and Applications. Studies in Fuzziness and Soft Computing Series. Springer, Heidelberg (2006)
-
(2006)
Studies in Fuzziness and Soft Computing Series
-
-
Guyon, I.1
Gunn, S.2
Nikravesh, M.3
Zadeh, L.4
-
2
-
-
76249127573
-
Universal learning machines
-
Chan, J.H. (ed.) ICONIP 2009, Part II. Springer, Heidelberg
-
Duch, W., Maszczyk, T.: Universal learning machines. In: Chan, J.H. (ed.) ICONIP 2009, Part II. LNCS, vol. 5864, pp. 206-215. Springer, Heidelberg (2009)
-
(2009)
LNCS
, vol.5864
, pp. 206-215
-
-
Duch, W.1
Maszczyk, T.2
-
3
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
DOI 10.1093/bioinformatics/btm344
-
Saeys, Y., Inza, I., Larrańaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507-2517 (2007) (Pubitemid 350048351)
-
(2007)
Bioinformatics
, vol.23
, Issue.19
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larranaga, P.3
-
5
-
-
77955398583
-
New challenges for feature selection in data mining and knowledge discovery
-
Saeys, Y., Liu, H., Inza, I., Wehenkel, L., de Peer, Y.V.: New challenges for feature selection in data mining and knowledge discovery. In: JMLR Workshop and Conf. Proc. (2008)
-
JMLR Workshop and Conf. Proc. (2008)
-
-
Saeys, Y.1
Liu, H.2
Inza, I.3
Wehenkel, L.4
De Peer, Y.V.5
-
6
-
-
34250809797
-
Filter methods
-
Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L. (eds.) Springer, Heidelberg
-
Duch, W.: Filter methods. In: Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L. (eds.) Feature extraction, foundations and applications, pp. 89-118. Springer, Heidelberg (2006)
-
(2006)
Feature Extraction, Foundations and Applications
, pp. 89-118
-
-
Duch, W.1
-
7
-
-
0000210889
-
Data Mining Using MLC++: A Machine Learning Library in C++
-
ICTAI'96 Best Papers
-
Kohavi, R., Sommerfield, D., Dougherty, J.: Data mining using MLC++, a machine learning library in C++. Int. J. of Artificial Intelligence Tools 6(4), 537-566 (1997) (Pubitemid 128022865)
-
(1997)
International Journal on Artificial Intelligence Tools
, vol.6
, Issue.4
, pp. 537-566
-
-
Kohavi, R.1
Sommerfield, D.2
Dougherty, J.3
-
9
-
-
33749558210
-
YALE: Rapid prototyping for complex data mining tasks
-
Mierswa, I.,Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: YALE: Rapid prototyping for complex data mining tasks. In: Proc. of the 12th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, KDD 2006 (2006)
-
Proc. of the 12th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, KDD 2006 (2006)
-
-
Mierswa, I.1
Wurst, M.2
Klinkenberg, R.3
Scholz, M.4
Euler, T.5
-
10
-
-
0036186686
-
Feature selection toolbox software package
-
DOI 10.1016/S0167-8655(01)00180-5, PII S0167865501001805
-
Pudil, P., Novovicova, J., Somol, P.: Feature selection toolbox software package. Pattern Recognition Lettters 23(4), 487-492 (2002) (Pubitemid 34197127)
-
(2002)
Pattern Recognition Letters
, vol.23
, Issue.4
, pp. 487-492
-
-
Pudil, P.1
Novovicova, J.2
Somol, P.3
-
11
-
-
0042388208
-
RankGene: Identification of diagnostic genes based on expression data
-
DOI 10.1093/bioinformatics/btg179
-
Su, Y., Murali, T., Pavlovic, V., Schaffer, M., Kasif, S.: Rankgene: identification of diagnostic genes based on expression data. Bioinformatics 19, 1578-1579 (2003) (Pubitemid 37038876)
-
(2003)
Bioinformatics
, vol.19
, Issue.12
, pp. 1578-1579
-
-
Su, Y.1
Murali, T.M.2
Pavlovic, V.3
Schaffer, M.4
Kasif, S.5
-
12
-
-
17044405923
-
Toward integrating feature selection algorithms for classification and clustering
-
DOI 10.1109/TKDE.2005.66
-
Liu, H., Yu, L.: Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. on Knowledge and Data Engineering 17(4), 491-502 (2005) (Pubitemid 40495592)
-
(2005)
IEEE Transactions on Knowledge and Data Engineering
, vol.17
, Issue.4
, pp. 491-502
-
-
Liu, H.1
Yu, L.2
-
13
-
-
0003309352
-
Numerical recipes in C
-
Cambridge University Press, Cambridge
-
Press, W., Teukolsky, S., Vetterling, W., Flannery, G.: Numerical recipes in C. The art of scientific computing. Cambridge University Press, Cambridge (1988)
-
(1988)
The Art of Scientific Computing
-
-
Press, W.1
Teukolsky, S.2
Vetterling, W.3
Flannery, G.4
-
14
-
-
0015607609
-
Feature evalution with measures of probabilistic dependence
-
Vilmansen, T.: Feature evalution with measures of probabilistic dependence. IEEE Transaction on Computers 22(4), 381-388 (1973)
-
(1973)
IEEE Transaction on Computers
, vol.22
, Issue.4
, pp. 381-388
-
-
Vilmansen, T.1
-
15
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
Golub, T., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531-537 (1999)
-
(1999)
Science
, vol.286
, pp. 531-537
-
-
Golub, T.1
-
16
-
-
17644384367
-
Minimum redundancy feature selection from microarray gene expression data
-
Ding, C., Peng, F.: Minimum redundancy feature selection from microarray gene expression data. Journal of Bioinformatics and Computational Biology 3(2), 185-205 (2004)
-
(2004)
Journal of Bioinformatics and Computational Biology
, vol.3
, Issue.2
, pp. 185-205
-
-
Ding, C.1
Peng, F.2
-
17
-
-
0028468293
-
Using mutual information for selecting features in supervised neural net learning
-
July
-
Battiti, R.: Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Networks 5(4) (July 1994)
-
(1994)
IEEE Trans. Neural Networks
, vol.5
, Issue.4
-
-
Battiti, R.1
-
19
-
-
77955365623
-
AMIFS: Adaptive feature selection by using mutual information
-
IEEE Press, Los Alamitos
-
Tesmer, M., Este'vez, P.: AMIFS: Adaptive feature selection by using mutual information. In: Proc. of Int. Joint Conf. on Neural Networks, Budapeszt, pp. 1415-1420. IEEE Press, Los Alamitos (2004)
-
(2004)
Proc. of Int. Joint Conf. on Neural Networks, Budapeszt
, pp. 1415-1420
-
-
Tesmer, M.1
Este'vez, P.2
-
20
-
-
25144492516
-
Efficient feature selection via analysis of relevance and redundancy
-
Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy. Journal of Machine Learning Research, JMLR 5, 1205-1224 (2004)
-
(2004)
Journal of Machine Learning Research, JMLR
, vol.5
, pp. 1205-1224
-
-
Yu, L.1
Liu, H.2
-
21
-
-
70849100216
-
Feature Selection for High-Dimensional Data: A Kolmogorov- Smirnov Correlation-Based Filter Solution
-
Springer, Heidelberg
-
Duch, W., Biesiada, J.: Feature Selection for High-Dimensional Data: A Kolmogorov- Smirnov Correlation-Based Filter Solution. In: Advances in Soft Computing, pp. 95-104 Springer, Heidelberg (2005)
-
(2005)
Advances in Soft Computing
, pp. 95-104
-
-
Duch, W.1
Biesiada, J.2
-
22
-
-
54049088610
-
A Kolmogorov-Smirnov correlation-based filter solution for microarray gene expressions data
-
Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds.) ICONIP 2007, Part II. Springer, Heidelberg
-
Biesiada, J., Duch,W.: A Kolmogorov-Smirnov correlation-based filter solution for microarray gene expressions data. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds.) ICONIP 2007, Part II. LNCS, vol. 4985, pp. 285-294. Springer, Heidelberg (2008)
-
(2008)
LNCS
, vol.4985
, pp. 285-294
-
-
Biesiada, J.1
Duch, W.2
-
23
-
-
77955406083
-
Feature Selection for Supervised Classification: A Kolmogorov-Smirnov Class Correlation-Based Filter
-
Blachnik, M., Duch, W., Kachel, A., Biesiada, J.: Feature Selection for Supervised Classification: A Kolmogorov-Smirnov Class Correlation-Based Filter. In: AIMeth, Symposium on Methods of Artificial Intelligence, Gliwice, Poland, November 10-19 (2009)
-
AIMeth, Symposium on Methods of Artificial Intelligence, Gliwice, Poland, November 10-19 (2009)
-
-
Blachnik, M.1
Duch, W.2
Kachel, A.3
Biesiada, J.4
-
26
-
-
84868627056
-
GD: A Measure based on Information Theory for Attribute Selection
-
Coelho, H. (ed.) IBERAMIA 1998. Springer, Heidelberg
-
Lorenzo, J., Hermandez, M., Mendez, J.: GD: A Measure based on Information Theory for Attribute Selection. In: Coelho, H. (ed.) IBERAMIA 1998. LNCS (LNAI), vol. 1484, pp. 124-135. Springer, Heidelberg (1998)
-
(1998)
LNCS (LNAI)
, vol.1484
, pp. 124-135
-
-
Lorenzo, J.1
Hermandez, M.2
Mendez, J.3
-
27
-
-
0032044157
-
Information theoretic subset selection for neural network models
-
PII S0098135497002275
-
Sridhar, D., Barlett, E., Seagrave, R.: Informatic theoretic susbset selection for neural networks models. Computers & Chemical Engineering 22(4), 613-626 (1998) (Pubitemid 128714161)
-
(1998)
Computers and Chemical Engineering
, vol.22
, Issue.4-5
, pp. 613-626
-
-
Sridhar, D.V.1
Bartlett, E.B.2
Seagrave, R.C.3
-
28
-
-
85099325734
-
Irrelevant features and the subset selection problem
-
Morgan Kaufmann, San Francisco
-
John, G., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection problem. In: Proc. Eleventh Inter. Conf. on Machine Learning, pp. 121-129. Morgan Kaufmann, San Francisco (1994)
-
(1994)
Proc. Eleventh Inter. Conf. on Machine Learning
, pp. 121-129
-
-
John, G.1
Kohavi, R.2
Pfleger, K.3
-
29
-
-
61349133540
-
Feature Selection for High-Dimensional Data: A Pearson Redundancy Based Filter
-
Springer, Heidelberg
-
Biesiada, J., Duch, W.: Feature Selection for High-Dimensional Data: A Pearson Redundancy Based Filter. In: Advances in Soft Computing, vol. 45, pp. 242-249. Springer, Heidelberg (2008)
-
(2008)
Advances in Soft Computing
, vol.45
, pp. 242-249
-
-
Biesiada, J.1
Duch, W.2
|