메뉴 건너뛰기




Volumn 6113 LNAI, Issue PART 1, 2010, Pages 388-396

Infosel++: Information based feature selection C++ Library

Author keywords

[No Author keywords available]

Indexed keywords

C++ LIBRARIES; FEATURE RANKING; FEATURE SELECTION; FEATURE SELECTION ALGORITHM; HYBRID ALGORITHMS; MACHINE LEARNING METHODS; MACHINE-LEARNING; PROBABILITY ESTIMATION;

EID: 77955408445     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-13208-7_49     Document Type: Conference Paper
Times cited : (7)

References (29)
  • 2
    • 76249127573 scopus 로고    scopus 로고
    • Universal learning machines
    • Chan, J.H. (ed.) ICONIP 2009, Part II. Springer, Heidelberg
    • Duch, W., Maszczyk, T.: Universal learning machines. In: Chan, J.H. (ed.) ICONIP 2009, Part II. LNCS, vol. 5864, pp. 206-215. Springer, Heidelberg (2009)
    • (2009) LNCS , vol.5864 , pp. 206-215
    • Duch, W.1    Maszczyk, T.2
  • 3
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • DOI 10.1093/bioinformatics/btm344
    • Saeys, Y., Inza, I., Larrańaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507-2517 (2007) (Pubitemid 350048351)
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 6
    • 34250809797 scopus 로고    scopus 로고
    • Filter methods
    • Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L. (eds.) Springer, Heidelberg
    • Duch, W.: Filter methods. In: Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L. (eds.) Feature extraction, foundations and applications, pp. 89-118. Springer, Heidelberg (2006)
    • (2006) Feature Extraction, Foundations and Applications , pp. 89-118
    • Duch, W.1
  • 10
    • 0036186686 scopus 로고    scopus 로고
    • Feature selection toolbox software package
    • DOI 10.1016/S0167-8655(01)00180-5, PII S0167865501001805
    • Pudil, P., Novovicova, J., Somol, P.: Feature selection toolbox software package. Pattern Recognition Lettters 23(4), 487-492 (2002) (Pubitemid 34197127)
    • (2002) Pattern Recognition Letters , vol.23 , Issue.4 , pp. 487-492
    • Pudil, P.1    Novovicova, J.2    Somol, P.3
  • 11
    • 0042388208 scopus 로고    scopus 로고
    • RankGene: Identification of diagnostic genes based on expression data
    • DOI 10.1093/bioinformatics/btg179
    • Su, Y., Murali, T., Pavlovic, V., Schaffer, M., Kasif, S.: Rankgene: identification of diagnostic genes based on expression data. Bioinformatics 19, 1578-1579 (2003) (Pubitemid 37038876)
    • (2003) Bioinformatics , vol.19 , Issue.12 , pp. 1578-1579
    • Su, Y.1    Murali, T.M.2    Pavlovic, V.3    Schaffer, M.4    Kasif, S.5
  • 12
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • DOI 10.1109/TKDE.2005.66
    • Liu, H., Yu, L.: Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. on Knowledge and Data Engineering 17(4), 491-502 (2005) (Pubitemid 40495592)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 14
    • 0015607609 scopus 로고
    • Feature evalution with measures of probabilistic dependence
    • Vilmansen, T.: Feature evalution with measures of probabilistic dependence. IEEE Transaction on Computers 22(4), 381-388 (1973)
    • (1973) IEEE Transaction on Computers , vol.22 , Issue.4 , pp. 381-388
    • Vilmansen, T.1
  • 15
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub, T., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531-537 (1999)
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.1
  • 16
    • 17644384367 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • Ding, C., Peng, F.: Minimum redundancy feature selection from microarray gene expression data. Journal of Bioinformatics and Computational Biology 3(2), 185-205 (2004)
    • (2004) Journal of Bioinformatics and Computational Biology , vol.3 , Issue.2 , pp. 185-205
    • Ding, C.1    Peng, F.2
  • 17
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • July
    • Battiti, R.: Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Networks 5(4) (July 1994)
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.4
    • Battiti, R.1
  • 19
    • 77955365623 scopus 로고    scopus 로고
    • AMIFS: Adaptive feature selection by using mutual information
    • IEEE Press, Los Alamitos
    • Tesmer, M., Este'vez, P.: AMIFS: Adaptive feature selection by using mutual information. In: Proc. of Int. Joint Conf. on Neural Networks, Budapeszt, pp. 1415-1420. IEEE Press, Los Alamitos (2004)
    • (2004) Proc. of Int. Joint Conf. on Neural Networks, Budapeszt , pp. 1415-1420
    • Tesmer, M.1    Este'vez, P.2
  • 20
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy. Journal of Machine Learning Research, JMLR 5, 1205-1224 (2004)
    • (2004) Journal of Machine Learning Research, JMLR , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 21
    • 70849100216 scopus 로고    scopus 로고
    • Feature Selection for High-Dimensional Data: A Kolmogorov- Smirnov Correlation-Based Filter Solution
    • Springer, Heidelberg
    • Duch, W., Biesiada, J.: Feature Selection for High-Dimensional Data: A Kolmogorov- Smirnov Correlation-Based Filter Solution. In: Advances in Soft Computing, pp. 95-104 Springer, Heidelberg (2005)
    • (2005) Advances in Soft Computing , pp. 95-104
    • Duch, W.1    Biesiada, J.2
  • 22
    • 54049088610 scopus 로고    scopus 로고
    • A Kolmogorov-Smirnov correlation-based filter solution for microarray gene expressions data
    • Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds.) ICONIP 2007, Part II. Springer, Heidelberg
    • Biesiada, J., Duch,W.: A Kolmogorov-Smirnov correlation-based filter solution for microarray gene expressions data. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds.) ICONIP 2007, Part II. LNCS, vol. 4985, pp. 285-294. Springer, Heidelberg (2008)
    • (2008) LNCS , vol.4985 , pp. 285-294
    • Biesiada, J.1    Duch, W.2
  • 26
    • 84868627056 scopus 로고    scopus 로고
    • GD: A Measure based on Information Theory for Attribute Selection
    • Coelho, H. (ed.) IBERAMIA 1998. Springer, Heidelberg
    • Lorenzo, J., Hermandez, M., Mendez, J.: GD: A Measure based on Information Theory for Attribute Selection. In: Coelho, H. (ed.) IBERAMIA 1998. LNCS (LNAI), vol. 1484, pp. 124-135. Springer, Heidelberg (1998)
    • (1998) LNCS (LNAI) , vol.1484 , pp. 124-135
    • Lorenzo, J.1    Hermandez, M.2    Mendez, J.3
  • 27
    • 0032044157 scopus 로고    scopus 로고
    • Information theoretic subset selection for neural network models
    • PII S0098135497002275
    • Sridhar, D., Barlett, E., Seagrave, R.: Informatic theoretic susbset selection for neural networks models. Computers & Chemical Engineering 22(4), 613-626 (1998) (Pubitemid 128714161)
    • (1998) Computers and Chemical Engineering , vol.22 , Issue.4-5 , pp. 613-626
    • Sridhar, D.V.1    Bartlett, E.B.2    Seagrave, R.C.3
  • 28
    • 85099325734 scopus 로고
    • Irrelevant features and the subset selection problem
    • Morgan Kaufmann, San Francisco
    • John, G., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection problem. In: Proc. Eleventh Inter. Conf. on Machine Learning, pp. 121-129. Morgan Kaufmann, San Francisco (1994)
    • (1994) Proc. Eleventh Inter. Conf. on Machine Learning , pp. 121-129
    • John, G.1    Kohavi, R.2    Pfleger, K.3
  • 29
    • 61349133540 scopus 로고    scopus 로고
    • Feature Selection for High-Dimensional Data: A Pearson Redundancy Based Filter
    • Springer, Heidelberg
    • Biesiada, J., Duch, W.: Feature Selection for High-Dimensional Data: A Pearson Redundancy Based Filter. In: Advances in Soft Computing, vol. 45, pp. 242-249. Springer, Heidelberg (2008)
    • (2008) Advances in Soft Computing , vol.45 , pp. 242-249
    • Biesiada, J.1    Duch, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.