-
1
-
-
0000205312
-
-
10.1021/ar9701225
-
A. Kohen, Acc. Chem. Res. 31, 397 (1998). 10.1021/ar9701225
-
(1998)
Acc. Chem. Res.
, vol.31
, pp. 397
-
-
Kohen, A.1
-
2
-
-
0033519723
-
-
10.1038/20981
-
A. Kohen, Nature (London) 399, 496 (1999). 10.1038/20981
-
(1999)
Nature (London)
, vol.399
, pp. 496
-
-
Kohen, A.1
-
4
-
-
0032546413
-
-
10.1038/32609
-
M. Benoit, Nature (London) 392, 258 (1998). 10.1038/32609
-
(1998)
Nature (London)
, vol.392
, pp. 258
-
-
Benoit, M.1
-
5
-
-
0034323556
-
-
10.1103/PhysRevLett.85.4566
-
L. J. Lauhon, Phys. Rev. Lett. 85, 4566 (2000). 10.1103/PhysRevLett.85. 4566
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 4566
-
-
Lauhon, L.J.1
-
6
-
-
2342482279
-
-
10.1103/PhysRevLett.92.136104
-
V. A. Ranea, Phys. Rev. Lett. 92, 136104 (2004). 10.1103/PhysRevLett.92. 136104
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 136104
-
-
Ranea, V.A.1
-
7
-
-
42549124618
-
-
10.1103/PhysRevLett.100.166101
-
T. Kumagai, Phys. Rev. Lett. 100, 166101 (2008). 10.1103/PhysRevLett.100. 166101
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 166101
-
-
Kumagai, T.1
-
8
-
-
60949095211
-
-
10.1103/PhysRevB.79.035423
-
T. Kumagai, Phys. Rev. B 79, 035423 (2009). 10.1103/PhysRevB.79.035423
-
(2009)
Phys. Rev. B
, vol.79
, pp. 035423
-
-
Kumagai, T.1
-
9
-
-
0029254909
-
-
10.1016/0039-6028(94)00731-4
-
G. H. J. Mills, Surf. Sci. 324, 305 (1995). 10.1016/0039-6028(94)00731-4
-
(1995)
Surf. Sci.
, vol.324
, pp. 305
-
-
Mills, G.H.J.1
-
10
-
-
20144380685
-
-
10.1524/zkri.220.5.567.65075
-
S. J. Clark, Z. Kristallogr. 220, 567 (2005). 10.1524/zkri.220.5.567. 65075
-
(2005)
Z. Kristallogr.
, vol.220
, pp. 567
-
-
Clark, S.J.1
-
11
-
-
12844286241
-
-
10.1103/PhysRevB.47.558
-
G. Kresse, Phys. Rev. B 47, 558 (1993). 10.1103/PhysRevB.47.558
-
(1993)
Phys. Rev. B
, vol.47
, pp. 558
-
-
Kresse, G.1
-
12
-
-
27744460065
-
-
10.1103/PhysRevB.49.14251
-
G. Kresse, Phys. Rev. B 49, 14251 (1994). 10.1103/PhysRevB.49.14251
-
(1994)
Phys. Rev. B
, vol.49
, pp. 14251
-
-
Kresse, G.1
-
13
-
-
0030190741
-
-
10.1016/0927-0256(96)00008-0
-
G. Kresse, Comput. Mater. Sci. 6, 15 (1996). 10.1016/0927-0256(96)00008-0
-
(1996)
Comput. Mater. Sci.
, vol.6
, pp. 15
-
-
Kresse, G.1
-
14
-
-
2442537377
-
-
10.1103/PhysRevB.54.11169
-
G. Kresse, Phys. Rev. B 54, 11169 (1996). 10.1103/PhysRevB.54.11169
-
(1996)
Phys. Rev. B
, vol.54
, pp. 11169
-
-
Kresse, G.1
-
15
-
-
20544463457
-
-
10.1103/PhysRevB.41.7892
-
D. Vanderbilt, Phys. Rev. B 41, 7892 (1990). 10.1103/PhysRevB.41.7892
-
(1990)
Phys. Rev. B
, vol.41
, pp. 7892
-
-
Vanderbilt, D.1
-
16
-
-
25744460922
-
-
10.1103/PhysRevB.50.17953
-
P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). 10.1103/PhysRevB.50. 17953
-
(1994)
Phys. Rev. B
, vol.50
, pp. 17953
-
-
Blöchl, P.E.1
-
17
-
-
4243943295
-
-
10.1103/PhysRevLett.77.3865
-
J. P. Perdew, Phys. Rev. Lett. 77, 3865 (1996). 10.1103/PhysRevLett.77. 3865
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 3865
-
-
Perdew, J.P.1
-
18
-
-
1842816907
-
-
10.1103/PhysRevB.13.5188
-
H. J. Monkhorst, Phys. Rev. B 13, 5188 (1976). 10.1103/PhysRevB.13.5188
-
(1976)
Phys. Rev. B
, vol.13
, pp. 5188
-
-
Monkhorst, H.J.1
-
19
-
-
0001053428
-
-
-1. This is discussed in 10.1088/0022-3719/20/24/005
-
- 1. This is discussed in M. J. Gillan, J. Phys. C 20, 3621 (1987). 10.1088/0022-3719/20/24/005
-
(1987)
J. Phys. C
, vol.20
, pp. 3621
-
-
Gillan, M.J.1
-
20
-
-
77955363774
-
-
The zero-point energy contribution to the activation energy barrier is determined from the initial-state and transition-state frequencies. The ZPE of a state is EZPE = 2 iN νi, where N is the number of vibrational modes (six at the initial state and five at the transition state). The effect of ZPE on the barrier is given by E TS ZPE - E IS ZPE.
-
The zero-point energy contribution to the activation energy barrier is determined from the initial-state and transition-state frequencies. The ZPE of a state is E ZPE = 2 i N ν i, where N is the number of vibrational modes (six at the initial state and five at the transition state). The effect of ZPE on the barrier is given by E TS ZPE - E IS ZPE.
-
-
-
-
21
-
-
77955352417
-
-
Using the full OH (or OD) mass along a reaction coordinate given by the movement of the center of mass of the molecule.
-
Using the full OH (or OD) mass along a reaction coordinate given by the movement of the center of mass of the molecule.
-
-
-
-
22
-
-
33749311351
-
-
10.1063/1.445323
-
B. C. Garrett, J. Chem. Phys. 78, 4400 (1983). 10.1063/1.445323
-
(1983)
J. Chem. Phys.
, vol.78
, pp. 4400
-
-
Garrett, B.C.1
-
23
-
-
77955373342
-
-
rH is determined as the arc length of the hydrogen from the surface-normal position using rH =rπθ/180, where r is the OH bond length.
-
r H is determined as the arc length of the hydrogen from the surface-normal position using r H = r π θ / 180, where r is the OH bond length.
-
-
-
-
24
-
-
24944539127
-
-
10.1002/cphc.200400638
-
M. Dyer, ChemPhysChem 6, 1711 (2005). 10.1002/cphc.200400638
-
(2005)
ChemPhysChem
, vol.6
, pp. 1711
-
-
Dyer, M.1
-
25
-
-
0000081488
-
-
10.1063/1.458575
-
G. Groenenboom, J. Chem. Phys. 92, 4374 (1990). 10.1063/1.458575
-
(1990)
J. Chem. Phys.
, vol.92
, pp. 4374
-
-
Groenenboom, G.1
|