메뉴 건너뛰기




Volumn 26, Issue 16, 2010, Pages 2020-2028

Causal relationship inference for a large-scale cellular network

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; BIOLOGICAL MODEL; COMPUTER SIMULATION; PROBABILITY; REGRESSION ANALYSIS; SIGNAL TRANSDUCTION; STATISTICAL MODEL;

EID: 77955356160     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btq325     Document Type: Article
Times cited : (25)

References (22)
  • 1
    • 0032616683 scopus 로고    scopus 로고
    • Identification of genetic networks from a small number of gene expression patterns under the Boolean network model
    • Akutsu, T. et al. (1999) Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Pac. Symp. Biocomput., 4, 17-28.
    • (1999) Pac. Symp. Biocomput. , vol.4 , pp. 17-28
    • Akutsu, T.1
  • 2
    • 9644284380 scopus 로고    scopus 로고
    • Inference of signaling and gene regulatory networks by steady-state perturbation experiments: structure and accuracy
    • Andrec, M. et al. (2005) Inference of signaling and gene regulatory networks by steady-state perturbation experiments: structure and accuracy. J.Theor. Biol., 232, 427-441.
    • (2005) J.Theor. Biol. , vol.232 , pp. 427-441
    • Andrec, M.1
  • 3
    • 33645307955 scopus 로고    scopus 로고
    • Inference of gene regulatory networks and compound mode of action from time course gene expression profiles
    • Bansal, M. et al. (2006) Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics, 22, 815-822.
    • (2006) Bioinformatics , vol.22 , pp. 815-822
    • Bansal, M.1
  • 4
    • 0742305866 scopus 로고    scopus 로고
    • Network biology: understanding the cell's functional organization
    • Barabasi, A.L. and Oltvai, Z.N. (2004) Network biology: understanding the cell's functional organization. Nat. Rev. Genet., 5, 101-113.
    • (2004) Nat. Rev. Genet. , vol.5 , pp. 101-113
    • Barabasi, A.L.1    Oltvai, Z.N.2
  • 5
    • 33846826914 scopus 로고    scopus 로고
    • Randomized approximation algorithms for set multicover problems with applications to reverse engineering of protein and gene networks
    • Berman, P. et al. (2007) Randomized approximation algorithms for set multicover problems with applications to reverse engineering of protein and gene networks. Discrete Appl. Math., 155, 733-749.
    • (2007) Discrete Appl. Math. , vol.155 , pp. 733-749
    • Berman, P.1
  • 6
    • 63049128934 scopus 로고    scopus 로고
    • A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches
    • Cantone, I. et al. (2009) A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell, 137, 172-181.
    • (2009) Cell , vol.137 , pp. 172-181
    • Cantone, I.1
  • 7
    • 55949104584 scopus 로고    scopus 로고
    • Quantitative inference by qualitative semantic knowledge mining with Bayesian model averaging
    • Chang, R. et al. (2008) Quantitative inference by qualitative semantic knowledge mining with Bayesian model averaging. IEEE Trans. Knowl. Data Eng., 20, 1587-1599.
    • (2008) IEEE Trans. Knowl. Data Eng. , vol.20 , pp. 1587-1599
    • Chang, R.1
  • 8
    • 65549085067 scopus 로고    scopus 로고
    • Power-law distributions in empirical data
    • Clauset, A. et al. (2009) Power-law distributions in empirical data. SIAM Rev., 51, 661-703.
    • (2009) SIAM Rev , vol.51 , pp. 661-703
    • Clauset, A.1
  • 9
    • 12344321571 scopus 로고    scopus 로고
    • Discovery of meaningful associations in genomic data using partial correlation coefficients
    • de la Fuente, A. et al. (2004) Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics, 20, 3565-3574.
    • (2004) Bioinformatics , vol.20 , pp. 3565-3574
    • de la Fuente, A.1
  • 10
    • 34547788797 scopus 로고    scopus 로고
    • Bayesian approaches to reverse engineer cellular systems: a simulation study on nonlinear Gaussian networks
    • Ferrazzi, F. et al. (2007) Bayesian approaches to reverse engineer cellular systems: a simulation study on nonlinear Gaussian networks. BMC Bioinformatics, 8 (Suppl. 5), S2.
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL. 5
    • Ferrazzi, F.1
  • 11
    • 0038048325 scopus 로고    scopus 로고
    • Inferring genetic networks and identifying compound mode of action via expression profiling
    • Gardner, T.S. et al. (2003) Inferring genetic networks and identifying compound mode of action via expression profiling. Science, 301, 102-105.
    • (2003) Science , vol.301 , pp. 102-105
    • Gardner, T.S.1
  • 12
    • 14844286390 scopus 로고    scopus 로고
    • Reverse-engineering transcription control networks
    • Gardner, T.S. and Faith, J.J. (2005) Reverse-engineering transcription control networks. Phys. Life Rev., 2, 65-88.
    • (2005) Phys. Life Rev. , vol.2 , pp. 65-88
    • Gardner, T.S.1    Faith, J.J.2
  • 13
    • 0004236492 scopus 로고
    • 2nd edn.The John Hopkins University Press, Baltimore
    • Gloub, G.H. and Van Loan, C.F. (1989) Matrix Computation, 2nd edn. The John Hopkins University Press, Baltimore.
    • (1989) Matrix Computation
    • Gloub, G.H.1    Van Loan, C.F.2
  • 14
    • 0036789922 scopus 로고    scopus 로고
    • Untangling the wires: a strategy to trace functional interactions in signaling and gene networks
    • Kholodenko, B.N. et al. (2002) Untangling the wires: a strategy to trace functional interactions in signaling and gene networks. Proc. Natl Acad. Sci. USA, 99, 12841-12846.
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 12841-12846
    • Kholodenko, B.N.1
  • 16
    • 4143058645 scopus 로고    scopus 로고
    • Gene networks inference using dynamic Bayesian networks
    • Perrin, B.E. et al. (2003) Gene networks inference using dynamic Bayesian networks. Bioinformatics, 19 (Suppl. 2), II138-II148.
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL. 2
    • Perrin, B.E.1
  • 17
    • 77949644952 scopus 로고    scopus 로고
    • Towards a rigorous assessment of systems biology models: the DREAM3 challenges
    • Prill, R.J. et al. (2010) Towards a rigorous assessment of systems biology models: the DREAM3 challenges. PLoS One, 5, e9202.
    • (2010) PLoS One , vol.5
    • Prill, R.J.1
  • 18
    • 0036212767 scopus 로고    scopus 로고
    • Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors
    • Schoeberl, B. et al. (2002) Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat. Biotechnol., 20, 370-375.
    • (2002) Nat. Biotechnol. , vol.20 , pp. 370-375
    • Schoeberl, B.1
  • 19
    • 0036184629 scopus 로고    scopus 로고
    • Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks
    • Shmulevich, I. et al. (2002) Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics, 18, 261-274.
    • (2002) Bioinformatics , vol.18 , pp. 261-274
    • Shmulevich, I.1
  • 20
    • 58149234398 scopus 로고    scopus 로고
    • Network reconstruction based on steady-state data
    • Sontag, E. (2008) Network reconstruction based on steady-state data. Essays Biochem., 45, 161-176.
    • (2008) Essays Biochem , vol.45 , pp. 161-176
    • Sontag, E.1
  • 22
    • 34249659391 scopus 로고    scopus 로고
    • Reconstruction Boolean networks from noisy gene expression data
    • Zheng, Y. and Kwoh, C.K. (2004) Reconstruction Boolean networks from noisy gene expression data. Int. Conf. Control Autom. Robot. Vis., 4, 58-72.
    • (2004) Int. Conf. Control Autom. Robot. Vis. , vol.4 , pp. 58-72
    • Zheng, Y.1    Kwoh, C.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.