-
1
-
-
39749085709
-
-
10.1038/nmat2133
-
L. Bogani, Nature Mater. 7, 179 (2008). 10.1038/nmat2133
-
(2008)
Nature Mater.
, vol.7
, pp. 179
-
-
Bogani, L.1
-
2
-
-
33646857061
-
-
10.1103/PhysRevLett.96.206801
-
H. B. Heersche, Phys. Rev. Lett. 96, 206801 (2006). 10.1103/PhysRevLett. 96.206801
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 206801
-
-
Heersche, H.B.1
-
3
-
-
33749650418
-
-
10.1021/nl061212i
-
M.-H. Jo, Nano Lett. 6, 2014 (2006). 10.1021/nl061212i
-
(2006)
Nano Lett.
, vol.6
, pp. 2014
-
-
Jo, M.-H.1
-
4
-
-
54949157425
-
-
10.1038/nmat2300
-
J. E. Grose, Nature Mater. 7, 884 (2008). 10.1038/nmat2300
-
(2008)
Nature Mater.
, vol.7
, pp. 884
-
-
Grose, J.E.1
-
5
-
-
19744367657
-
-
10.1103/PhysRevLett.93.207403
-
L. Besombes, Phys. Rev. Lett. 93, 207403 (2004). 10.1103/PhysRevLett.93. 207403
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 207403
-
-
Besombes, L.1
-
6
-
-
28644433401
-
-
10.1103/PhysRevB.71.161307
-
L. Besombes, Phys. Rev. B 71, 161307 (R) (2005). 10.1103/PhysRevB.71. 161307
-
(2005)
Phys. Rev. B
, vol.71
, pp. 161307
-
-
Besombes, L.1
-
7
-
-
27144536527
-
-
10.1103/PhysRevLett.95.047403
-
Y. Léger, Phys. Rev. Lett. 95, 047403 (2005). 10.1103/PhysRevLett. 95.047403
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 047403
-
-
Léger, Y.1
-
8
-
-
33748518638
-
-
10.1103/PhysRevLett.97.107401
-
Y. Léger, Phys. Rev. Lett. 97, 107401 (2006). 10.1103/PhysRevLett. 97.107401
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 107401
-
-
Léger, Y.1
-
9
-
-
54049119202
-
-
10.1103/PhysRevB.78.125324
-
L. Besombes, Phys. Rev. B 78, 125324 (2008). 10.1103/PhysRevB.78.125324
-
(2008)
Phys. Rev. B
, vol.78
, pp. 125324
-
-
Besombes, L.1
-
10
-
-
63649126409
-
-
10.1103/PhysRevLett.102.127402
-
C. Le Gall, Phys. Rev. Lett. 102, 127402 (2009). 10.1103/PhysRevLett.102. 127402
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 127402
-
-
Le Gall, C.1
-
12
-
-
33947182530
-
-
10.1103/PhysRevLett.98.106805
-
J. Fernández-Rossier, Phys. Rev. Lett. 98, 106805 (2007). 10.1103/PhysRevLett.98.106805
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 106805
-
-
Fernández-Rossier, J.1
-
13
-
-
0004473015
-
-
10.1016/S0370-1573(99)00123-4
-
Ya. M. Blanter, Phys. Rep. 336, 1 (2000). 10.1016/S0370-1573(99)00123-4
-
(2000)
Phys. Rep.
, vol.336
, pp. 1
-
-
Blanter, Ya.M.1
-
14
-
-
36149006439
-
-
10.1103/PhysRev.89.472It is important to emphasize that there are two slightly different "Dicke" effects in the Quantum Optics literature. The first one refers to collective spontaneous decay of an ensemble of radiating atoms in a coherent manner. The second (more general) one, which we discuss here, can be understood as splitting of decay rates into fast and slow channels. See Sec. 4 in
-
R. H. Dicke, Phys. Rev. 89, 472 (1953). 10.1103/PhysRev.89.472
-
(1953)
Phys. Rev.
, vol.89
, pp. 472
-
-
Dicke, R.H.1
-
15
-
-
14544302164
-
-
10.1016/j.physrep.2004.12.002, and references therein.
-
T. Brandes, Phys. Rep. 408, 315 (2005) 10.1016/j.physrep.2004.12.002
-
(2005)
Phys. Rep.
, vol.408
, pp. 315
-
-
Brandes, T.1
-
16
-
-
0003562493
-
-
Series on Nanoscience and Technology, edited by D. D. Awschalom, D. Loss, and N. Samarth (Springer-Verlag, Berlin
-
Semiconductor Spintronics and Quantum Computation, Series on Nanoscience and Technology, edited by, D. D. Awschalom,,, D. Loss,, and, N. Samarth, (Springer-Verlag, Berlin, 2002).
-
(2002)
Semiconductor Spintronics and Quantum Computation
-
-
-
17
-
-
35948945517
-
-
10.1126/science.1146110
-
C. Hirjibehedin, Science 317, 1199 (2007). 10.1126/science.1146110
-
(2007)
Science
, vol.317
, pp. 1199
-
-
Hirjibehedin, C.1
-
18
-
-
33751109504
-
-
10.1103/PhysRevLett.97.206805
-
H. Sellier, Phys. Rev. Lett. 97, 206805 (2006). 10.1103/PhysRevLett.97. 206805
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 206805
-
-
Sellier, H.1
-
19
-
-
67649208515
-
-
10.1038/nphys1247
-
H. O. H. Churchill, Nat. Phys. 5, 321 (2009). 10.1038/nphys1247
-
(2009)
Nat. Phys.
, vol.5
, pp. 321
-
-
Churchill, H.O.H.1
-
20
-
-
77955349682
-
-
) 2 are very small as compared to Mn-hole exhange. This anisotropy is, however, important when the Korringa mechanism contributes to Mn spin relaxation in the absence of carriers. See Ref.. When α=1, we recover the physics of an isotropic Heisenberg model, which can be used to model electron transport as well. This kind of model has been used extensively in the literature to model SMMs coupled to electrodes. See, e.g.
-
) 2 are very small as compared to Mn-hole exhange. This anisotropy is, however, important when the Korringa mechanism contributes to Mn spin relaxation in the absence of carriers. See Ref..
-
-
-
-
21
-
-
28644434687
-
-
10.1103/PhysRevB.71.155403;
-
F. Elste, Phys. Rev. B 71, 155403 (2005) 10.1103/PhysRevB.71.155403
-
(2005)
Phys. Rev. B
, vol.71
, pp. 155403
-
-
Elste, F.1
-
22
-
-
33751052704
-
-
10.1103/PhysRevLett.97.206601;
-
C. Romeike, Phys. Rev. Lett. 97, 206601 (2006) 10.1103/PhysRevLett.97. 206601
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 206601
-
-
Romeike, C.1
-
23
-
-
34347324060
-
-
10.1103/PhysRevB.75.205341;
-
K.-I. Imura, Phys. Rev. B 75, 205341 (2007) 10.1103/PhysRevB.75.205341
-
(2007)
Phys. Rev. B
, vol.75
, pp. 205341
-
-
Imura, K.-I.1
-
24
-
-
70350044693
-
-
10.1063/1.3243693
-
G. Kiesslich, Appl. Phys. Lett. 95, 152104 (2009). 10.1063/1.3243693
-
(2009)
Appl. Phys. Lett.
, vol.95
, pp. 152104
-
-
Kiesslich, G.1
-
25
-
-
42749100786
-
-
10.1103/PhysRevB.70.205334
-
C. Flindt, Phys. Rev. B 70, 205334 (2004); 10.1103/PhysRevB.70.205334
-
(2004)
Phys. Rev. B
, vol.70
, pp. 205334
-
-
Flindt, C.1
-
26
-
-
33846548663
-
-
10.1103/PhysRevB.75.045340
-
N. Lambert, Phys. Rev. B 75, 045340 (2007). 10.1103/PhysRevB.75.045340
-
(2007)
Phys. Rev. B
, vol.75
, pp. 045340
-
-
Lambert, N.1
-
27
-
-
77955382301
-
-
See supplementary material at, for more technical details about the shot noise calculation
-
See supplementary material at http://link.aps.org/supplemental/10.1103/ PhysRevB.81.161309 for more technical details about the shot noise calculation.
-
-
-
-
28
-
-
28644439343
-
-
10.1103/PhysRevB.71.161301
-
W. Belzig, Phys. Rev. B 71, 161301 (R) (2005). 10.1103/PhysRevB.71.161301
-
(2005)
Phys. Rev. B
, vol.71
, pp. 161301
-
-
Belzig, W.1
-
29
-
-
33144459976
-
-
10.1103/PhysRevB.73.045301In our case, spin-flip processes leading to super-Poissonian behavior occur already at the lowest (sequential) order. This is in contrast with super-Poissonian behavior due to spin-flip cotunneling in nonmagnetic QDs, see, e.g.
-
J. Fernández-Rossier, Phys. Rev. B 73, 045301 (2006). 10.1103/PhysRevB.73.045301
-
(2006)
Phys. Rev. B
, vol.73
, pp. 045301
-
-
Fernández-Rossier, J.1
-
30
-
-
0000354693
-
-
10.1103/PhysRevB.63.125315;
-
E. V. Sukhorukov, Phys. Rev. B 63, 125315 (2001) 10.1103/PhysRevB.63. 125315
-
(2001)
Phys. Rev. B
, vol.63
, pp. 125315
-
-
Sukhorukov, E.V.1
-
31
-
-
28844499938
-
-
10.1103/PhysRevLett.95.146806
-
A. Thielmann, Phys. Rev. Lett. 95, 146806 (2005). 10.1103/PhysRevLett.95. 146806
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 146806
-
-
Thielmann, A.1
|