메뉴 건너뛰기




Volumn 73, Issue 13-15, 2010, Pages 2614-2623

VQSVM: A case study for incorporating prior domain knowledge into inductive machine learning

Author keywords

Imbalance data; Inductive machine learning; Prior domain knowledge; Support vector machine

Indexed keywords

DATA SETS; DOMAIN KNOWLEDGE; IMBALANCED DATA SETS; INDUCTIVE MACHINE LEARNING; KEY CHARACTERISTICS; LEARNING PHASE; LEARNING PROCESS; MACHINE LEARNING METHODS; REAL-WORLD PROBLEM; SEMIPARAMETRIC;

EID: 77955331482     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2010.05.007     Document Type: Article
Times cited : (38)

References (37)
  • 1
    • 0004255908 scopus 로고    scopus 로고
    • McGraw-Hill Science/Engineering/Math, New York, NY
    • Mitchell T. Machine Learning 1997, McGraw-Hill Science/Engineering/Math, New York, NY.
    • (1997) Machine Learning
    • Mitchell, T.1
  • 2
    • 2442696911 scopus 로고    scopus 로고
    • Credit risk assessment using statistical and machine learning: basic methodology and risk modeling applications
    • Galindo J., Tamayo P. Credit risk assessment using statistical and machine learning: basic methodology and risk modeling applications. Computational Economics 2000, 15:107-143.
    • (2000) Computational Economics , vol.15 , pp. 107-143
    • Galindo, J.1    Tamayo, P.2
  • 3
    • 77955314163 scopus 로고    scopus 로고
    • Lecture 2, Learning Problem and Regularization, in: Statistical Learning Theory and Applications, MIT Opencourseware
    • T. Poggio, Lecture 2, Learning Problem and Regularization, in: Statistical Learning Theory and Applications, MIT Opencourseware, 2003.
    • (2003)
    • Poggio, T.1
  • 5
    • 77955323737 scopus 로고    scopus 로고
    • Selective transfer of neural network task knowledge, Ph.D. Thesis, Department of Computer Science, University of Western Ontario, London, Canada
    • L.S. Daniel, Selective transfer of neural network task knowledge, Ph.D. Thesis, Department of Computer Science, University of Western Ontario, London, Canada, 2000.
    • (2000)
    • Daniel, L.S.1
  • 7
    • 51749084180 scopus 로고    scopus 로고
    • Prior knowledge in support vector kernels, in: Proceedings of the 1997 Conference on Advances in Neural Information Processing Systems, Denver, CO, USA
    • B. Scholkopf, P. Simard, A. Smola, V. Vapnik, Prior knowledge in support vector kernels, in: Proceedings of the 1997 Conference on Advances in Neural Information Processing Systems, vol. 10, Denver, CO, USA, 1998, pp. 640-646.
    • (1998) , vol.10 , pp. 640-646
    • Scholkopf, B.1    Simard, P.2    Smola, A.3    Vapnik, V.4
  • 8
    • 0032203371 scopus 로고    scopus 로고
    • Incorporating prior information in machine learning by creating virtual examples
    • Niyogi P., Girosi F., Poggio T. Incorporating prior information in machine learning by creating virtual examples. IEEE 1998, 86.
    • (1998) IEEE , vol.86
    • Niyogi, P.1    Girosi, F.2    Poggio, T.3
  • 9
    • 2442674367 scopus 로고    scopus 로고
    • EDDIE-Automation, a decision support tool for financial forecasting
    • Tsang E., Yung P., Li J. EDDIE-Automation, a decision support tool for financial forecasting. Decision Support Systems 2004, 37:559-565.
    • (2004) Decision Support Systems , vol.37 , pp. 559-565
    • Tsang, E.1    Yung, P.2    Li, J.3
  • 10
    • 77955328700 scopus 로고
    • NP-Complete Problems. The Design and Analysis of Computer Algorithms, Addison-Wesley Series in Computer Science and Information Processing. Addison-Wesley, (Chapter 10)
    • A.V. Aho, J.E. Hopcroft, J.D. Ullman, NP-Complete Problems. The Design and Analysis of Computer Algorithms, Addison-Wesley Series in Computer Science and Information Processing. Addison-Wesley, 1974 (Chapter 10).
    • (1974)
    • Aho, A.V.1    Hopcroft, J.E.2    Ullman, J.D.3
  • 11
    • 0036161034 scopus 로고    scopus 로고
    • Training invariant support vector machines machine learning
    • Decoste D., Scholkopf B. Training invariant support vector machines machine learning. Machine Learning 2002, 46:161-190.
    • (2002) Machine Learning , vol.46 , pp. 161-190
    • Decoste, D.1    Scholkopf, B.2
  • 13
    • 16244390840 scopus 로고    scopus 로고
    • Financial prediction using modified probabilistic learning network with embedded local linear models, in: CIMSA2004-IEEE International Conference on Computational Intelligence for Measurement Systems and Applications
    • T. Jan, T. Yu, J. Debenham, S. Simoff, Financial prediction using modified probabilistic learning network with embedded local linear models, in: CIMSA2004-IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, 2004.
    • (2004)
    • Jan, T.1    Yu, T.2    Debenham, J.3    Simoff, S.4
  • 15
    • 77955330536 scopus 로고    scopus 로고
    • Hierarchical clustering with constraints: theory and practice, in: The 9th European Principles and Practice of KDD, PKDD
    • I. Davidson, S.S. Ravi, Hierarchical clustering with constraints: theory and practice, in: The 9th European Principles and Practice of KDD, PKDD, 2005.
    • (2005)
    • Davidson, I.1    Ravi, S.S.2
  • 16
    • 77955336352 scopus 로고
    • P. Simard, B. Victorri, Y.L. Cun, J. Denker, in: J. Moody (Ed.), Tangent Prop-A Formalism for Specifying Selected Invariances in an Adaptive Network Advances in Neural Information Processing Systems, Morgan Kaufmann
    • P. Simard, B. Victorri, Y.L. Cun, J. Denker, in: J. Moody (Ed.), Tangent Prop-A Formalism for Specifying Selected Invariances in an Adaptive Network Advances in Neural Information Processing Systems, vol. 4, Morgan Kaufmann, 1992.
    • (1992) , vol.4
  • 17
    • 29344472579 scopus 로고    scopus 로고
    • Knowledge-based kernel approximation, Journal of Machine Learning Research
    • O.L. Mangasarian, J.W. Shavlik, E.W. Wild, Knowledge-based kernel approximation, Journal of Machine Learning Research 5, (2004) 1127-1141.
    • (2004) , vol.5 , pp. 1127-1141
    • Mangasarian, O.L.1    Shavlik, J.W.2    Wild, E.W.3
  • 19
    • 77955316026 scopus 로고    scopus 로고
    • Incorporating Prior Knolwedge with Weighted Margin Support Vector Machines, KDD 04, ACM
    • X. Wu, R. Srihari, Incorporating Prior Knolwedge with Weighted Margin Support Vector Machines, KDD 04, ACM, 2004.
    • (2004)
    • Wu, X.1    Srihari, R.2
  • 20
    • 0742268991 scopus 로고    scopus 로고
    • Support vector machine with adaptive parameters in financial time series forecasting
    • Cao L.J., Tay F.E.H. Support vector machine with adaptive parameters in financial time series forecasting. IEEE Transaction on Neural Networks 2003, 14.
    • (2003) IEEE Transaction on Neural Networks , vol.14
    • Cao, L.J.1    Tay, F.E.H.2
  • 21
    • 77955311040 scopus 로고    scopus 로고
    • Cost-sensitive Learning in Support Vector Machines
    • F.R. Giorgio Fumera, Cost-sensitive Learning in Support Vector Machines, 2002.
    • (2002)
    • Giorgio Fumera, F.R.1
  • 23
    • 77955313375 scopus 로고    scopus 로고
    • Semiparametric support vector machines for nonlinear model
    • IEEE Press, S. Haykin (Ed.)
    • Mattera D., Palmieri F., Haykin S. Semiparametric support vector machines for nonlinear model. Estimation Intelligent Signal Processing 2001, 295-305. IEEE Press. S. Haykin (Ed.).
    • (2001) Estimation Intelligent Signal Processing , pp. 295-305
    • Mattera, D.1    Palmieri, F.2    Haykin, S.3
  • 24
    • 77955325355 scopus 로고    scopus 로고
    • An introduction to nonparametric hierarchical Bayesian modelling with a focus on multi-agent learning, in: Proceedings of the Hamilton Summer School on Switching and Learning in Feedback Systems. Lecture Notes in Computing Science
    • V. Tresp, K. Yu, An introduction to nonparametric hierarchical Bayesian modelling with a focus on multi-agent learning, in: Proceedings of the Hamilton Summer School on Switching and Learning in Feedback Systems. Lecture Notes in Computing Science, 2004.
    • (2004)
    • Tresp, V.1    Yu, K.2
  • 27
    • 77955333844 scopus 로고    scopus 로고
    • Editorial: special issue on learning from imbalanced data sets, SIGKDD Explorations
    • N.V. Chawla, N. Japkowics, A. Kolcz, Editorial: special issue on learning from imbalanced data sets, SIGKDD Explorations 6 (2004).
    • (2004) , vol.6
    • Chawla, N.V.1    Japkowics, N.2    Kolcz, A.3
  • 28
    • 77955341061 scopus 로고    scopus 로고
    • Controlling the sensitivity of support vector machines, in: The International Joint Conference on Artificial Intelligence (IJCAI99), Workshop ML3
    • K. Veropoulos, C. Campbell, N. Cristianini, Controlling the sensitivity of support vector machines, in: The International Joint Conference on Artificial Intelligence (IJCAI99), Workshop ML3, 1999, pp. 55-60.
    • (1999) , pp. 55-60
    • Veropoulos, K.1    Campbell, C.2    Cristianini, N.3
  • 30
    • 0036161029 scopus 로고    scopus 로고
    • Support vector machines for classification in nonstandard situations
    • Lin Y., Lee Y., Wahba G. Support vector machines for classification in nonstandard situations. Machine Learning 2002, 46:191-202.
    • (2002) Machine Learning , vol.46 , pp. 191-202
    • Lin, Y.1    Lee, Y.2    Wahba, G.3
  • 31
    • 22944452794 scopus 로고    scopus 로고
    • Applying support vector machines to imbalanced datasets, in: Proceedings of the 15th European Conference on Machine Learning (ECML)
    • R. Akbani, S. Kwek, N. Japkowicz, Applying support vector machines to imbalanced datasets, in: Proceedings of the 15th European Conference on Machine Learning (ECML), 2004, pp. 39-50.
    • (2004) , pp. 39-50
    • Akbani, R.1    Kwek, S.2    Japkowicz, N.3
  • 32
    • 34548548958 scopus 로고    scopus 로고
    • Bias analysis in text classification for highly skewed data, in: The International Conference on Data Mining
    • L. Tang, H. Liu, Bias analysis in text classification for highly skewed data, in: The International Conference on Data Mining, 2005.
    • (2005)
    • Tang, L.1    Liu, H.2
  • 33
    • 77955324232 scopus 로고    scopus 로고
    • Class imbalances: Are we focusing on the right issue? in: Workshop on Learning From Imbalanced Data Sets II
    • N. Japkowicz, Class imbalances: Are we focusing on the right issue? in: Workshop on Learning From Imbalanced Data Sets II, 2003.
    • (2003)
    • Japkowicz, N.1
  • 34
    • 77955315360 scopus 로고    scopus 로고
    • Listed company auditor self-selection bias and audit fee premiums
    • Y. Li, D. Stokes, J. Hamilton, Listed company auditor self-selection bias and audit fee premiums, 2005.
    • (2005)
    • Li, Y.1    Stokes, D.2    Hamilton, J.3
  • 35
    • 0001972236 scopus 로고    scopus 로고
    • Addressing the curse of imbalanced data sets: one-sided sampling, in: Proceedings of the Fourteenth International Conference on Machine Learning
    • M. Kubat, S. Matwin, Addressing the curse of imbalanced data sets: one-sided sampling, in: Proceedings of the Fourteenth International Conference on Machine Learning, 1997, pp. 179-186.
    • (1997) , pp. 179-186
    • Kubat, M.1    Matwin, S.2
  • 36
    • 84945789128 scopus 로고
    • An approach to combining explanation-based and neural learning algorithms
    • Towell G., Shavlik J. An approach to combining explanation-based and neural learning algorithms. Connection Science 1989, 1:233-255.
    • (1989) Connection Science , vol.1 , pp. 233-255
    • Towell, G.1    Shavlik, J.2
  • 37
    • 0026261284 scopus 로고
    • Prior knowledge and autonomous learning
    • Russell S.J. Prior knowledge and autonomous learning. Robotics and Autonomous Systems 1991, 8:145-159.
    • (1991) Robotics and Autonomous Systems , vol.8 , pp. 145-159
    • Russell, S.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.