메뉴 건너뛰기




Volumn 161, Issue 17, 2010, Pages 2256-2275

On the distributivity of fuzzy implications over representable uninorms

Author keywords

Functional equations; Fuzzy connectives; Fuzzy implication; Uninorm

Indexed keywords

APPROXIMATE REASONING; CAUCHY FUNCTIONAL EQUATIONS; DISTRIBUTIVE EQUATIONS; DISTRIBUTIVITY; FUNCTIONAL EQUATION; FUZZY CONNECTIVES; FUZZY IMPLICATIONS; T - NORM; T-CONORMS; UNINORMS; VERTICAL SECTION;

EID: 77955282703     PISSN: 01650114     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fss.2010.03.005     Document Type: Article
Times cited : (20)

References (20)
  • 4
    • 77949487315 scopus 로고    scopus 로고
    • On the distributivity of fuzzy implications over continuous and Archimedean triangular conorms
    • M. Baczyński On the distributivity of fuzzy implications over continuous and Archimedean triangular conorms Fuzzy Sets and Systems 161 2010 1406 1419
    • (2010) Fuzzy Sets and Systems , vol.161 , pp. 1406-1419
    • Baczyński, M.1
  • 6
    • 67149143364 scopus 로고    scopus 로고
    • On the distributivity of fuzzy implications over nilpotent or strict triangular conorms
    • M. Baczyński, and B. Jayaram On the distributivity of fuzzy implications over nilpotent or strict triangular conorms IEEE Trans. Fuzzy Syst. 17 2009 590 603
    • (2009) IEEE Trans. Fuzzy Syst. , vol.17 , pp. 590-603
    • Baczyński, M.1    Jayaram, B.2
  • 7
    • 1942436731 scopus 로고    scopus 로고
    • On the distributivity of implication operators over T- and S-norms
    • J. Balasubramaniam, and C.J.M. Rao On the distributivity of implication operators over T- and S-norms IEEE Trans. Fuzzy Syst. 12 2004 194 198
    • (2004) IEEE Trans. Fuzzy Syst. , vol.12 , pp. 194-198
    • Balasubramaniam, J.1    Rao, C.J.M.2
  • 8
    • 0037369062 scopus 로고    scopus 로고
    • Automorphisms, negation and implication operators
    • H. Bustince, P. Burillo, and F. Soria Automorphisms, negation and implication operators Fuzzy Sets and Systems 134 2003 209 229
    • (2003) Fuzzy Sets and Systems , vol.134 , pp. 209-229
    • Bustince, H.1    Burillo, P.2    Soria, F.3
  • 9
    • 0031999494 scopus 로고    scopus 로고
    • Combinatorial rule explosion eliminated by a fuzzy rule configuration
    • W.E. Combs, and J.E. Andrews Combinatorial rule explosion eliminated by a fuzzy rule configuration IEEE Trans. Fuzzy Syst. 6 1998 1 11
    • (1998) IEEE Trans. Fuzzy Syst. , vol.6 , pp. 1-11
    • Combs, W.E.1    Andrews, J.E.2
  • 10
    • 0032595162 scopus 로고    scopus 로고
    • Comments on "combinatorial rule explosion eliminated by a fuzzy rule configuration"
    • S. Dick, and A. Kandel Comments on "Combinatorial rule explosion eliminated by a fuzzy rule configuration" IEEE Trans. Fuzzy Syst. 7 1999 475 477
    • (1999) IEEE Trans. Fuzzy Syst. , vol.7 , pp. 475-477
    • Dick, S.1    Kandel, A.2
  • 16
    • 85008043300 scopus 로고    scopus 로고
    • Comments on "combinatorial rule explosion eliminated by a fuzzy rule configuration"
    • J.M. Mendel, and Q. Liang Comments on "Combinatorial rule explosion eliminated by a fuzzy rule configuration" IEEE Trans. Fuzzy Syst. 7 1999 369 371
    • (1999) IEEE Trans. Fuzzy Syst. , vol.7 , pp. 369-371
    • Mendel, J.M.1    Liang, Q.2
  • 17
    • 33750723879 scopus 로고    scopus 로고
    • Distributivity of strong implications over conjunctive and disjunctive uninorms
    • D. Ruiz-Aguilera, and J. Torrens Distributivity of strong implications over conjunctive and disjunctive uninorms Kybernetika 42 2005 319 336
    • (2005) Kybernetika , vol.42 , pp. 319-336
    • Ruiz-Aguilera, D.1    Torrens, J.2
  • 18
    • 33750693042 scopus 로고    scopus 로고
    • Distributivity of residual implications over conjunctive and disjunctive uninorms
    • D. Ruiz-Aguilera, and J. Torrens Distributivity of residual implications over conjunctive and disjunctive uninorms Fuzzy Sets and Systems 158 2007 23 37
    • (2007) Fuzzy Sets and Systems , vol.158 , pp. 23-37
    • Ruiz-Aguilera, D.1    Torrens, J.2
  • 19
    • 0036475086 scopus 로고    scopus 로고
    • On the law [ p ∧ q → r ] = [ (p → r ) ∨ (q → r ) ] in fuzzy logic
    • E. Trillas, and C. Alsina On the law [ p ∧ q → r ] = [ (p → r ) ∨ (q → r ) ] in fuzzy logic IEEE Trans. Fuzzy Syst. 10 2002 84 88
    • (2002) IEEE Trans. Fuzzy Syst. , vol.10 , pp. 84-88
    • Trillas, E.1    Alsina, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.