메뉴 건너뛰기




Volumn 50, Issue 1, 2010, Pages 3-11

A segmentation framework for abdominal organs from CT scans

Author keywords

Abdominal organs; Computed tomography; Fast marching techniques; Pattern recognition; Virtual surgery applications

Indexed keywords

DIAGNOSIS; IMAGE SEGMENTATION; MEDICAL IMAGING; PATTERN RECOGNITION; STATISTICAL TESTS; VOLUME RENDERING;

EID: 77955276402     PISSN: 09333657     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.artmed.2010.04.010     Document Type: Article
Times cited : (41)

References (47)
  • 1
    • 66549091397 scopus 로고    scopus 로고
    • Measurement of kidney volume with multi-detector computed tomography scanning in young korean, (published online, PMCID: 2679189) doi:10.3349/ymj.2009.50.2.262
    • Shin H, Chung B, Lee S, Kim H, Ha WJ, Yang C. Measurement of kidney volume with multi-detector computed tomography scanning in young korean. Yonsei Medical Journal 2009:262-5, (published online, PMCID: 2679189). doi:10.3349/ymj.2009.50.2.262.
    • (2009) Yonsei Medical Journal , pp. 262-265
    • Shin, H.1    Chung, B.2    Lee, S.3    Kim, H.4    Ha, W.J.5    Yang, C.6
  • 2
    • 33747614579 scopus 로고    scopus 로고
    • Automated hepatic volumetry for living related liver transplantation at multisection CT
    • Nakayama Y., Li Q., Katsuragawa S., Ikeda R., Hiai Y., Awai K. Automated hepatic volumetry for living related liver transplantation at multisection CT. Radiology 2006, 240(3):743-748.
    • (2006) Radiology , vol.240 , Issue.3 , pp. 743-748
    • Nakayama, Y.1    Li, Q.2    Katsuragawa, S.3    Ikeda, R.4    Hiai, Y.5    Awai, K.6
  • 5
    • 17844408172 scopus 로고    scopus 로고
    • Computerized CT-based 3D visualization technique in living related liver transplantation
    • B. Kahan (Ed.)
    • Harms J., Bartels M., Bourquain H., Peitgen H., Schulz T., Kahn T. Computerized CT-based 3D visualization technique in living related liver transplantation. Transplantation proceedings 2005, 1059-1062. B. Kahan (Ed.).
    • (2005) Transplantation proceedings , pp. 1059-1062
    • Harms, J.1    Bartels, M.2    Bourquain, H.3    Peitgen, H.4    Schulz, T.5    Kahn, T.6
  • 7
    • 0029293527 scopus 로고
    • Knowledge-based organ identification from CT images
    • Kobashi M., Shapiro L.G. Knowledge-based organ identification from CT images. Pattern Recognition 1995, 28(4):475-491.
    • (1995) Pattern Recognition , vol.28 , Issue.4 , pp. 475-491
    • Kobashi, M.1    Shapiro, L.G.2
  • 9
    • 68249131171 scopus 로고    scopus 로고
    • Liver segmentation in CT data: A segmentation refinement approach
    • Springer Berlin, Heidelberg, T. Heimann, M. Styner, B. van Ginneken (Eds.)
    • Beichel R., Bauer C., Bornik A., Sorantin E., Bischof H. Liver segmentation in CT data: A segmentation refinement approach. 3D segmentation in the clinic: a grand challenge, LNCS 2007, 235-245. Springer Berlin, Heidelberg. T. Heimann, M. Styner, B. van Ginneken (Eds.).
    • (2007) 3D segmentation in the clinic: a grand challenge, LNCS , pp. 235-245
    • Beichel, R.1    Bauer, C.2    Bornik, A.3    Sorantin, E.4    Bischof, H.5
  • 10
    • 67249164082 scopus 로고    scopus 로고
    • Hepatux-a semiautomatic liver segmentation system
    • Springer Berlin, Heidelberg, T. Heimann, M. Styner, B. van Ginneken (Eds.)
    • Beck A., Aurich V. Hepatux-a semiautomatic liver segmentation system. 3D segmentation in the clinic: a grand challenge, LNCS 2007, 225-233. Springer Berlin, Heidelberg. T. Heimann, M. Styner, B. van Ginneken (Eds.).
    • (2007) 3D segmentation in the clinic: a grand challenge, LNCS , pp. 225-233
    • Beck, A.1    Aurich, V.2
  • 11
    • 0027523034 scopus 로고
    • Automatic segmentation of liver structure in CT images
    • Bae K.T., Giger M.L., Chen C.T., Kahn C.E. Automatic segmentation of liver structure in CT images. Medical Physics 1993, 20:71-78.
    • (1993) Medical Physics , vol.20 , pp. 71-78
    • Bae, K.T.1    Giger, M.L.2    Chen, C.T.3    Kahn, C.E.4
  • 12
  • 14
    • 70349751882 scopus 로고    scopus 로고
    • Efficient liver segmentation exploiting level-set speed images with 2. 5D shape propagation
    • Springer Berlin, Heidelberg, T. Heimann, M. Styner, B. van Ginneken (Eds.)
    • Lee J., Kim N., Lee H., Seo J., Won H., Shin Y. Efficient liver segmentation exploiting level-set speed images with 2. 5D shape propagation. 3D segmentation in the clinic: a grand challenge, LNCS 2007, 189-196. Springer Berlin, Heidelberg. T. Heimann, M. Styner, B. van Ginneken (Eds.).
    • (2007) 3D segmentation in the clinic: a grand challenge, LNCS , pp. 189-196
    • Lee, J.1    Kim, N.2    Lee, H.3    Seo, J.4    Won, H.5    Shin, Y.6
  • 15
    • 67650693021 scopus 로고    scopus 로고
    • Fully automatic liver segmentation for contrast-enhanced CT images
    • Springer Berlin, Heidelberg, T. Heimann, M. Styner, B. van Ginneken (Eds.)
    • Ruskò L., Bekes G., Nèmeth G., Fidrich M. Fully automatic liver segmentation for contrast-enhanced CT images. 3D segmentation in the clinic: a grand challenge, LNCS 2007, 143-150. Springer Berlin, Heidelberg. T. Heimann, M. Styner, B. van Ginneken (Eds.).
    • (2007) 3D segmentation in the clinic: a grand challenge, LNCS , pp. 143-150
    • Ruskò, L.1    Bekes, G.2    Nèmeth, G.3    Fidrich, M.4
  • 16
    • 68249087316 scopus 로고    scopus 로고
    • Automatic segmentation of the liver in computed tomography scans with voxel classification and atlas matching
    • Springer Berlin, Heidelberg, T. Heimann, M. Styner, B. van Ginneken (Eds.)
    • van Rikxoort E., Arzhaeva Y., van Ginneken B. Automatic segmentation of the liver in computed tomography scans with voxel classification and atlas matching. 3D segmentation in the clinic: a grand challenge, LNCS 2007, 101-108. Springer Berlin, Heidelberg. T. Heimann, M. Styner, B. van Ginneken (Eds.).
    • (2007) 3D segmentation in the clinic: a grand challenge, LNCS , pp. 101-108
    • van Rikxoort, E.1    Arzhaeva, Y.2    van Ginneken, B.3
  • 17
    • 0142182183 scopus 로고    scopus 로고
    • Identifying multiple abdominal organs from CT image series using a multimodule contextual neural network and spatial fuzzy rules
    • Lee C-C., Chung P-C., Tsai H-M. identifying multiple abdominal organs from CT image series using a multimodule contextual neural network and spatial fuzzy rules. IEEE Transaction on Information Technology in Biomedicine 2003, 7:208-217.
    • (2003) IEEE Transaction on Information Technology in Biomedicine , vol.7 , pp. 208-217
    • Lee, C.-C.1    Chung, P.-C.2    Tsai, H.-M.3
  • 18
    • 77955272039 scopus 로고    scopus 로고
    • Segmentation of the liver using a 3D statistical shape model. ZIB-Report 04-09 04-09
    • Lamecker H, Lange T, Seebass M. Segmentation of the liver using a 3D statistical shape model. ZIB-Report 04-09 04-09; 2004. p. 1-25.
    • (2004) , pp. 1-25
    • Lamecker, H.1    Lange, T.2    Seebass, M.3
  • 19
    • 0035192580 scopus 로고    scopus 로고
    • Fully automatic anatomical, pathological, and functional segmentation from CT scans for hepatic surgery
    • Soler L., Delingette H., Malandain G., Montagnat J., Ayache N., Koehl C. Fully automatic anatomical, pathological, and functional segmentation from CT scans for hepatic surgery. Computer Aided Surgery 2001, 6(3):131-142.
    • (2001) Computer Aided Surgery , vol.6 , Issue.3 , pp. 131-142
    • Soler, L.1    Delingette, H.2    Malandain, G.3    Montagnat, J.4    Ayache, N.5    Koehl, C.6
  • 20
    • 51049116015 scopus 로고    scopus 로고
    • Shape constrained automatic segmentation of the liver based on a heuristic intensity model
    • Springer Berlin, Heidelberg, T. Heimann, M. Styner, B. van Ginneken (Eds.)
    • Kainmuller D., Lange T., Lamecker H. Shape constrained automatic segmentation of the liver based on a heuristic intensity model. 3D segmentation in the clinic: a grand challenge, LNCS 2007, 109-116. Springer Berlin, Heidelberg. T. Heimann, M. Styner, B. van Ginneken (Eds.).
    • (2007) 3D segmentation in the clinic: a grand challenge, LNCS , pp. 109-116
    • Kainmuller, D.1    Lange, T.2    Lamecker, H.3
  • 21
    • 68249115962 scopus 로고    scopus 로고
    • Global-to-local shape matching for liver segmentation in CT imaging
    • Springer Berlin, Heidelberg, T. Heimann, M. Styner, B. van Ginneken (Eds.)
    • Saddi K., Rousson M., Chefd'hotel C., Cheriet F. Global-to-local shape matching for liver segmentation in CT imaging. 3D segmentation in the clinic: a grand challenge, LNCS 2007, 207-214. Springer Berlin, Heidelberg. T. Heimann, M. Styner, B. van Ginneken (Eds.).
    • (2007) 3D segmentation in the clinic: a grand challenge, LNCS , pp. 207-214
    • Saddi, K.1    Rousson, M.2    Chefd'hotel, C.3    Cheriet, F.4
  • 22
    • 45849145455 scopus 로고    scopus 로고
    • A statistical deformable model for the segmentation of liver CT volumes
    • Springer Berlin, Heidelberg, T. Heimann, M. Styner, B. van Ginneken (Eds.)
    • Heimann T., Meinzer H., Wolf I. A statistical deformable model for the segmentation of liver CT volumes. 3D segmentation in the clinic: a grand challenge, LNCS 2007, 161-166. Springer Berlin, Heidelberg. T. Heimann, M. Styner, B. van Ginneken (Eds.).
    • (2007) 3D segmentation in the clinic: a grand challenge, LNCS , pp. 161-166
    • Heimann, T.1    Meinzer, H.2    Wolf, I.3
  • 23
    • 0037941644 scopus 로고    scopus 로고
    • Construction of an abdominal probabilistic atlas and its application in segmentation
    • Park H., Bland P., Meyer C. Construction of an abdominal probabilistic atlas and its application in segmentation. IEEE Transactions on Medical Imaging 2003, 22(4):483-492.
    • (2003) IEEE Transactions on Medical Imaging , vol.22 , Issue.4 , pp. 483-492
    • Park, H.1    Bland, P.2    Meyer, C.3
  • 25
    • 68249116452 scopus 로고    scopus 로고
    • Automatic liver segmentation method based on maximum a posterior probability estimation and level set method
    • Springer Berlin, Heidelberg, T. Heimann, M. Styner, B. van Ginneken (Eds.)
    • Furukawa D., Shimizu A., Kobatake H. Automatic liver segmentation method based on maximum a posterior probability estimation and level set method. 3D segmentation in the clinic: a grand challenge, LNCS 2007, 117-124. Springer Berlin, Heidelberg. T. Heimann, M. Styner, B. van Ginneken (Eds.).
    • (2007) 3D segmentation in the clinic: a grand challenge, LNCS , pp. 117-124
    • Furukawa, D.1    Shimizu, A.2    Kobatake, H.3
  • 26
    • 0034849070 scopus 로고    scopus 로고
    • Automatic 3D segmentation of the liver from abdominal CT images: a level-set approach
    • M. Sonka, K.M. Hanson (Eds.)
    • Pan S., Dawant B. Automatic 3D segmentation of the liver from abdominal CT images: a level-set approach. Proceedings of SPIE medical imaging 2001, vol. 4322, LNCS 2001, 128-138. M. Sonka, K.M. Hanson (Eds.).
    • (2001) Proceedings of SPIE medical imaging 2001, vol. 4322, LNCS , pp. 128-138
    • Pan, S.1    Dawant, B.2
  • 27
    • 68249121487 scopus 로고    scopus 로고
    • Semi-automatic segmentation of the liver and its evaluation on the miccai 2007 grand challenge data set
    • Springer Berlin, Heidelberg, T. Heimann, M. Styner, B. van Ginneken (Eds.)
    • Dawant B., Li R., Lennon B., Li S. Semi-automatic segmentation of the liver and its evaluation on the miccai 2007 grand challenge data set. 3D segmentation in the clinic: a grand challenge, LNCS 2007, 215-221. Springer Berlin, Heidelberg. T. Heimann, M. Styner, B. van Ginneken (Eds.).
    • (2007) 3D segmentation in the clinic: a grand challenge, LNCS , pp. 215-221
    • Dawant, B.1    Li, R.2    Lennon, B.3    Li, S.4
  • 28
    • 61449244469 scopus 로고    scopus 로고
    • Liver segmentation from computed tomography scans: a survey and a new algorithm
    • Campadelli P., Casiraghi E., Esposito A. Liver segmentation from computed tomography scans: a survey and a new algorithm. Artificial Intelligence in Medicine 2008, 45:185-196.
    • (2008) Artificial Intelligence in Medicine , vol.45 , pp. 185-196
    • Campadelli, P.1    Casiraghi, E.2    Esposito, A.3
  • 29
    • 45849140927 scopus 로고    scopus 로고
    • 3D segmentation in the clinic: a grand challenge
    • Springer Berlin, Heidelberg, T. Heimann, M. Styner, B. van Ginneken (Eds.)
    • Ginneken B., Heimann T., Stiner M. 3D segmentation in the clinic: a grand challenge. 3D segmentation in the clinic: a grand challenge, LNCS 2007, 7-15. Springer Berlin, Heidelberg. T. Heimann, M. Styner, B. van Ginneken (Eds.).
    • (2007) 3D segmentation in the clinic: a grand challenge, LNCS , pp. 7-15
    • Ginneken, B.1    Heimann, T.2    Stiner, M.3
  • 32
    • 68249129674 scopus 로고    scopus 로고
    • Landmark based liver segmentation using local shape and local intensity models. In: Heimann T, Styner M, van Ginneken B, editors. 3D segmentation in the clinic: a grand challenge, LNCS. Heidelberg: Springer Berlin
    • Seghers D, Slagmolen P, Lambelin Y, Hermans J, Loeckx D, Maes F, et al. Landmark based liver segmentation using local shape and local intensity models. In: Heimann T, Styner M, van Ginneken B, editors. 3D segmentation in the clinic: a grand challenge, LNCS. Heidelberg: Springer Berlin; 2007. p. 135-42.
    • (2007) , pp. 135-142
    • Seghers, D.1    Slagmolen, P.2    Lambelin, Y.3    Hermans, J.4    Loeckx, D.5    Maes F.et, al.6
  • 33
    • 68249110078 scopus 로고    scopus 로고
    • Two-stage semi-automatic organ segmentation framework using radial basis functions and level sets
    • Springer Berlin, Heidelberg, T. Heimann, M. Styner, B. van Ginneken (Eds.)
    • Wimmer A., Soza G., Hornegger J. Two-stage semi-automatic organ segmentation framework using radial basis functions and level sets. 3D segmentation in the clinic: a grand challenge, LNCS 2007, 207-214. Springer Berlin, Heidelberg. T. Heimann, M. Styner, B. van Ginneken (Eds.).
    • (2007) 3D segmentation in the clinic: a grand challenge, LNCS , pp. 207-214
    • Wimmer, A.1    Soza, G.2    Hornegger, J.3
  • 34
    • 68249112807 scopus 로고    scopus 로고
    • Atlas based liver segmentation using nonrigid registration with a b-spline transformation model
    • Springer Berlin, Heidelberg, T. Heimann, M. Styner, B. van Ginneken (Eds.)
    • Slagmolen P., Elen A., Seghers D., Loeckx D., Maes F., Haustermans K. Atlas based liver segmentation using nonrigid registration with a b-spline transformation model. 3D segmentation in the clinic: a grand challenge, LNCS 2007, 197-206. Springer Berlin, Heidelberg. T. Heimann, M. Styner, B. van Ginneken (Eds.).
    • (2007) 3D segmentation in the clinic: a grand challenge, LNCS , pp. 197-206
    • Slagmolen, P.1    Elen, A.2    Seghers, D.3    Loeckx, D.4    Maes, F.5    Haustermans, K.6
  • 35
    • 68249114408 scopus 로고    scopus 로고
    • Cognition network technology for a fully automated 3d segmentation of liver
    • Springer Berlin, Heidelberg, T. Heimann, M. Styner, B. van Ginneken (Eds.)
    • Schmidt G., Athelogou M., Schonmeyer R., Korn R., Binnig G. Cognition network technology for a fully automated 3d segmentation of liver. 3D segmentation in the clinic: a grand challenge, LNCS 2007, 125-133. Springer Berlin, Heidelberg. T. Heimann, M. Styner, B. van Ginneken (Eds.).
    • (2007) 3D segmentation in the clinic: a grand challenge, LNCS , pp. 125-133
    • Schmidt, G.1    Athelogou, M.2    Schonmeyer, R.3    Korn, R.4    Binnig, G.5
  • 36
    • 68249117874 scopus 로고    scopus 로고
    • A hybrid approach for liver segmentation
    • Springer Berlin, Heidelberg, T. Heimann, M. Styner, B. van Ginneken (Eds.)
    • Susomboon R., Stan Raicu D., Furst J. A hybrid approach for liver segmentation. 3D segmentation in the clinic: a grand challenge, LNCS 2007, 151-160. Springer Berlin, Heidelberg. T. Heimann, M. Styner, B. van Ginneken (Eds.).
    • (2007) 3D segmentation in the clinic: a grand challenge, LNCS , pp. 151-160
    • Susomboon, R.1    Stan Raicu, D.2    Furst, J.3
  • 37
    • 68249083438 scopus 로고    scopus 로고
    • A discussion on the evaluation of a new automatic liver volume segmentation method for specified CT image datasets
    • Springer Berlin, Heidelberg, T. Heimann, M. Styner, B. van Ginneken (Eds.)
    • Chi Y., Cashman P., Bello F., Kitney R. A discussion on the evaluation of a new automatic liver volume segmentation method for specified CT image datasets. 3D segmentation in the clinic: a grand challenge, LNCS 2007, 167-175. Springer Berlin, Heidelberg. T. Heimann, M. Styner, B. van Ginneken (Eds.).
    • (2007) 3D segmentation in the clinic: a grand challenge, LNCS , pp. 167-175
    • Chi, Y.1    Cashman, P.2    Bello, F.3    Kitney, R.4
  • 40
    • 1842511489 scopus 로고    scopus 로고
    • Ordered upwind methods for static hamilton-jacobi equations: theory and algorithm
    • Sethian J., Vladimirsky A. Ordered upwind methods for static hamilton-jacobi equations: theory and algorithm. SIAM Journal on Numerical Analysis 2003, 41(1):325-363.
    • (2003) SIAM Journal on Numerical Analysis , vol.41 , Issue.1 , pp. 325-363
    • Sethian, J.1    Vladimirsky, A.2
  • 47
    • 0033201359 scopus 로고    scopus 로고
    • Topology adaptive deformable surfaces for medical image volume segmentation
    • McInerney T., Terzopoulos D. Topology adaptive deformable surfaces for medical image volume segmentation. IEEE Transactions on Medical Imaging 1999, 18(10):840-850.
    • (1999) IEEE Transactions on Medical Imaging , vol.18 , Issue.10 , pp. 840-850
    • McInerney, T.1    Terzopoulos, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.