메뉴 건너뛰기




Volumn 33, Issue 10, 2010, Pages 1141-1150

Identify P2P traffic by inspecting data transfer behavior

Author keywords

Content based partitioning; Data transfer behavior; P2P traffic identification; Rabin fingerprint; Traffic management

Indexed keywords

CONTENT-BASED; CONTENT-BASED PARTITIONING; DATA BLOCKS; NETWORK AREA; NETWORK TRAFFIC; NEW APPLICATIONS; P2P APPLICATIONS; P2P TRAFFIC IDENTIFICATION; PORT NUMBERS; SHARED DATA; TRAFFIC CLASSIFICATION; TRAFFIC MANAGEMENT;

EID: 77955272373     PISSN: 01403664     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.comcom.2010.01.005     Document Type: Article
Times cited : (39)

References (20)
  • 2
    • 19944406146 scopus 로고    scopus 로고
    • Accurate, scalable in-network identification of P2P traffic using application signatures
    • S. Sen, O. Spatscheck, D. Wang, Accurate, scalable in-network identification of P2P traffic using application signatures, in: Proceedings of ACM WWW'04, 2004.
    • (2004) Proceedings of ACM WWW'04
    • Sen, S.1    Spatscheck, O.2    Wang, D.3
  • 7
    • 58049120447 scopus 로고    scopus 로고
    • Self-learning IP traffic classification based on statistical flow characteristics
    • S. Zander, T. Nguyen, and G. Armitage Self-learning IP traffic classification based on statistical flow characteristics PAM 2005
    • (2005) PAM
    • Zander, S.1    Nguyen, T.2    Armitage, G.3
  • 8
    • 14344265818 scopus 로고    scopus 로고
    • Internet traffic classification using bayesian analysis techniques
    • A.W. Moore, D. Zuev, Internet traffic classification using bayesian analysis techniques, in: Proceedings of the ACM SIGMETRICS, 2005.
    • (2005) Proceedings of the ACM SIGMETRICS
    • Moore, A.W.1    Zuev, D.2
  • 9
    • 33750283653 scopus 로고    scopus 로고
    • A preliminary performance comparison of five machine learning algorithms for practical IP traffic flow classification
    • N. Williams, S. Zander, and G. Armitages A preliminary performance comparison of five machine learning algorithms for practical IP traffic flow classification SIGCOMM Computer Communication Review 36 5 2006 5 16
    • (2006) SIGCOMM Computer Communication Review , vol.36 , Issue.5 , pp. 5-16
    • Williams, N.1    Zander, S.2    Armitages, G.3
  • 10
    • 46749106429 scopus 로고    scopus 로고
    • Identification of P2P traffic based on the content redistribution characteristic
    • X. Lu, H. Duan, and X. Li Identification of P2P traffic based on the content redistribution characteristic Communications and Information Technologies 2007
    • (2007) Communications and Information Technologies
    • Lu, X.1    Duan, H.2    Li, X.3
  • 12
    • 33750346628 scopus 로고    scopus 로고
    • BLINC: Multilevel traffic classification in the dark
    • Philadelphia, PA
    • T. Karagiannis, K. Papagiannaki, M. Faloutsos, BLINC: multilevel traffic classification in the dark, ACM SIGCOMM, Philadelphia, PA, 2005.
    • (2005) ACM SIGCOMM
    • Karagiannis, T.1    Papagiannaki, K.2    Faloutsos, M.3
  • 13
    • 50649125588 scopus 로고    scopus 로고
    • Application identification based on network behavioral profiles
    • Y. Hu, D.M. Chiu, and J.C.S. Lui Application identification based on network behavioral profiles IEEE IWQoS 2008
    • (2008) IEEE IWQoS
    • Hu, Y.1    Chiu, D.M.2    Lui, J.C.S.3
  • 15
    • 85084163246 scopus 로고    scopus 로고
    • Autograph: Toward automated, distributed worm signature detection
    • Diego
    • H. Kim, B. Karp, Autograph: toward automated, distributed worm signature detection, in: Proceedings of the USENIX Security Symposium, Diego, 2004, pp. 271-286.
    • (2004) Proceedings of the USENIX Security Symposium , pp. 271-286
    • Kim, H.1    Karp, B.2
  • 16
    • 0003676885 scopus 로고
    • Tech. Rep. TR-15-81, Center for Research in Computing Technology, Harvard University
    • M.O. Rabin, Fingerprinting by Random Polynomials, Tech. Rep. TR-15-81, Center for Research in Computing Technology, Harvard University, 1981.
    • (1981) Fingerprinting by Random Polynomials
    • Rabin, M.O.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.