-
4
-
-
10444234131
-
-
ZEUS
-
M. Derrick et al. (ZEUS), Phys. Lett. B 345, 576 (1995).
-
(1995)
Phys. Lett. B
, vol.345
, pp. 576
-
-
Derrick, M.1
-
5
-
-
33947691663
-
-
hep-ph/0611254
-
W. K. Tung, H. L. Lai, A. Belyaev, J. Pumplin, D. Stump, C.-P. Yuan, J. High Energy Phys. 02, 053 (2007). hep-ph/0611254.
-
(2007)
J. High Energy Phys.
, vol.2
, pp. 053
-
-
Tung, W.K.1
Lai, H.L.2
Belyaev, A.3
Pumplin, J.4
Stump, D.5
Yuan, C.-P.6
-
6
-
-
23044461017
-
-
CTEQhep-ph/0201195
-
J. Pumplin et al. (CTEQ), J. High Energy Phys. 07, 012 (2002). hep-ph/0201195.
-
(2002)
J. High Energy Phys.
, vol.7
, pp. 012
-
-
Pumplin, J.1
-
7
-
-
48349086804
-
-
arXiv:0802.0007 [hep-ph]
-
W. K. Tung, H. L. Lai, A. Belyaev, J. Pumplin, D. Stump, C.-P. Yuan, Phys. Rev. D 78, 013004 (2008). arXiv: 0802. 0007 [hep-ph].
-
(2008)
Phys. Rev. D
, vol.78
, pp. 013004
-
-
Tung, W.K.1
Lai, H.L.2
Belyaev, A.3
Pumplin, J.4
Stump, D.5
Yuan, C.-P.6
-
8
-
-
69949129417
-
-
arXiv:0901.0002 [hep-ph]
-
A. Martin, W. Stirling, R. Thorne, G. Watt, Eur. Phys. J. C 63, 189 (2009). arXiv: 0901. 0002 [hep-ph].
-
(2009)
Eur. Phys. J. C
, vol.63
, pp. 189
-
-
Martin, A.1
Stirling, W.2
Thorne, R.3
Watt, G.4
-
9
-
-
7044282684
-
-
hep-ph/0308087
-
A. D. Martin, R. G. Roberts, W. J. Stirling, R. S. Thorne, Eur. Phys. J. C 35, 325 (2004). hep-ph/0308087.
-
(2004)
Eur. Phys. J. C
, vol.35
, pp. 325
-
-
Martin, A.D.1
Roberts, R.G.2
Stirling, W.J.3
Thorne, R.S.4
-
10
-
-
3543077915
-
-
ZEUShep-ph/0101051
-
D. Stump et al. (ZEUS), Phys. Rev. D 65, 014012 (2002). hep-ph/0101051.
-
(2002)
Phys. Rev. D
, vol.65
, pp. 014012
-
-
Stump, D.1
-
11
-
-
0036142727
-
-
ZEUShep-ph/0101032
-
D. Stump et al. (ZEUS), Phys. Rev. D 65, 014013 (2002). hep-ph/0101032.
-
(2002)
Phys. Rev. D
, vol.65
, pp. 014013
-
-
Stump, D.1
-
13
-
-
33847022996
-
-
"This is not a so-called well-posed problem. The inverse Laplace transform is an unbounded operator which gives rise to a numerically ill-conditioned problem", p. ix, Basel: Birkhauser
-
U. Graf, Applied Laplace Transforms and z-Transforms for Scientists and Engineers (Birkhauser, Basel, 2003). "This is not a so-called well-posed problem. The inverse Laplace transform is an unbounded operator which gives rise to a numerically ill-conditioned problem", p. ix.
-
(2003)
Applied Laplace Transforms and Z-Transforms for Scientists and Engineers
-
-
Graf, U.1
-
15
-
-
75849148716
-
-
Mathematica 7, Inc., Champaign, IL, USA
-
Mathematica 7, a computing program from Wolfram Research, Inc., Champaign, IL, USA, www. wolfram. com (2009).
-
(2009)
A Computing Program from Wolfram Research
-
-
|