메뉴 건너뛰기




Volumn 51, Issue 5, 2010, Pages 499-514

Improvements to message computation in lazy propagation

Author keywords

Bayesian network; Belief update; Lazy propagation

Indexed keywords

BAYESIAN NETWORKS (BNS); EXPONENTIAL TIME; PERFORMANCE IMPACT; REAL-WORLD; VARIABLE ELIMINATION;

EID: 77955227160     PISSN: 0888613X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijar.2010.01.009     Document Type: Conference Paper
Times cited : (21)

References (34)
  • 1
    • 16244422508 scopus 로고    scopus 로고
    • Value elimination: Bayesian inference via backtracking search
    • F. Bacchus, S. Dalmao, T. Pitassi, Value elimination: Bayesian inference via backtracking search, in: Proc. of UAI, 2003, pp. 20-28.
    • (2003) Proc. of UAI , pp. 20-28
    • Bacchus, F.1    Dalmao, S.2    Pitassi, T.3
  • 2
    • 33746084021 scopus 로고    scopus 로고
    • An improved LAZY-AR approach to Bayesian network inference
    • C.J. Butz, S. Hua, An improved LAZY-AR approach to Bayesian network inference, in: Canadian Conference on AI, 2006, pp. 183-194.
    • (2006) Canadian Conference on AI , pp. 183-194
    • Butz, C.J.1    Hua, S.2
  • 5
    • 0025401005 scopus 로고
    • The computational complexity of probabilistic inference using Bayesian belief networks
    • G.F. Cooper The computational complexity of probabilistic inference using Bayesian belief networks Artificial Intelligence 42 2-3 1990 393 405
    • (1990) Artificial Intelligence , vol.42 , Issue.23 , pp. 393-405
    • Cooper, G.F.1
  • 6
    • 25444489846 scopus 로고    scopus 로고
    • Local propagation in conditional Gaussian Bayesian networks
    • R.G. Cowell Local propagation in conditional Gaussian Bayesian networks Journal of Machine Learning Research 6 2005 1517 1550
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1517-1550
    • Cowell, R.G.1
  • 8
    • 0027560587 scopus 로고
    • Approximating probabilistic inference in Bayesian belief networks is NP-hard
    • P. Dagum, and M. Luby Approximating probabilistic inference in Bayesian belief networks is NP-hard Artificial Intelligence 60 1993 141 153
    • (1993) Artificial Intelligence , vol.60 , pp. 141-153
    • Dagum, P.1    Luby, M.2
  • 9
    • 8344231010 scopus 로고    scopus 로고
    • Any-space probabilistic inference
    • A. Darwiche, Any-space probabilistic inference, in: Proc. of UAI, 2000, pp. 133-142.
    • (2000) Proc. of UAI , pp. 133-142
    • Darwiche, A.1
  • 10
    • 0006504636 scopus 로고    scopus 로고
    • Query dags: A practical paradigm for implementing belief-network inference
    • A. Darwiche, G. Provan, Query dags: a practical paradigm for implementing belief-network inference, in: JAIR, 1997, pp. 147-176.
    • (1997) JAIR , pp. 147-176
    • Darwiche, A.1    Provan, G.2
  • 11
    • 0002251094 scopus 로고    scopus 로고
    • Bucket elimination: A unifying framework for probabilistic inference
    • R. Dechter, Bucket elimination: a unifying framework for probabilistic inference, in: Proc. of UAI, 1996, pp. 211-219.
    • (1996) Proc. of UAI , pp. 211-219
    • Dechter, R.1
  • 12
    • 0000308021 scopus 로고    scopus 로고
    • Topological parameters for time-space tradeoff
    • R. Dechter, Topological parameters for time-space tradeoff, in: Proc. of UAI, 1996, pp. 220-227.
    • (1996) Proc. of UAI , pp. 220-227
    • Dechter, R.1
  • 13
    • 77955231979 scopus 로고    scopus 로고
    • Research Report, Department of Naval Architecture and Offshore Engineering, Technical University of Denmark
    • P.F. Hansen, P.T. Pedersen, Risk Analysis of Conventional and Solo Watch Keeping, Research Report, Department of Naval Architecture and Offshore Engineering, Technical University of Denmark, 1998.
    • (1998) Risk Analysis of Conventional and Solo Watch Keeping
    • Hansen, P.F.1    Pedersen, P.T.2
  • 16
    • 0002012853 scopus 로고
    • Optimal junction trees
    • F.V. Jensen, F. Jensen, Optimal junction trees, in: Proc. of UAI, 1994, pp. 360-366.
    • (1994) Proc. of UAI , pp. 360-366
    • Jensen, F.V.1    Jensen, F.2
  • 20
    • 0036250059 scopus 로고    scopus 로고
    • The use of a Bayesian network in the design of a decision support system for growing malting barley without use of pesticides
    • K. Kristensen, and I.A. Rasmussen The use of a Bayesian network in the design of a decision support system for growing malting barley without use of pesticides Computers and Electronics in Agriculture 33 2002 192 217
    • (2002) Computers and Electronics in Agriculture , vol.33 , pp. 192-217
    • Kristensen, K.1    Rasmussen, I.A.2
  • 21
    • 0001006209 scopus 로고
    • Local computations with probabilities on graphical structures and their application to expert systems
    • S.L. Lauritzen, and D.J. Spiegelhalter Local computations with probabilities on graphical structures and their application to expert systems Journal of the Royal Statistical Society B 50 2 1988 157 224
    • (1988) Journal of the Royal Statistical Society B , vol.50 , Issue.2 , pp. 157-224
    • Lauritzen, S.L.1    Spiegelhalter, D.J.2
  • 22
  • 23
    • 64249130287 scopus 로고    scopus 로고
    • Solving CLQG influence diagrams using arc-reversal operations in a strong junction tree
    • A.L. Madsen, Solving CLQG influence diagrams using arc-reversal operations in a strong junction tree, in: Fourth European Workshop on Probabilistic Graphical Models, 2008, pp. 201-208.
    • (2008) Fourth European Workshop on Probabilistic Graphical Models , pp. 201-208
    • Madsen, A.L.1
  • 24
    • 0033188793 scopus 로고    scopus 로고
    • Lazy propagation: A junction tree inference algorithm based on lazy evaluation
    • A.L. Madsen, and F.V. Jensen Lazy propagation: a junction tree inference algorithm based on lazy evaluation Artificial Intelligence 113 1-2 1999 203 245
    • (1999) Artificial Intelligence , vol.113 , Issue.12 , pp. 203-245
    • Madsen, A.L.1    Jensen, F.V.2
  • 25
    • 38149145005 scopus 로고
    • Potential influence diagrams
    • P. Ndilikilikesha Potential influence diagrams IJAR 11 1 1994 251 285
    • (1994) IJAR , vol.11 , Issue.1 , pp. 251-285
    • Ndilikilikesha, P.1
  • 26
    • 0003473088 scopus 로고
    • Ph.D. Thesis, Department of Engineering-Economic Systems, Stanford University, Stanford, CA
    • S.M. Olmsted, On Representing and Solving Decision Problems, Ph.D. Thesis, Department of Engineering-Economic Systems, Stanford University, Stanford, CA, 1983.
    • (1983) On Representing and Solving Decision Problems
    • Olmsted, S.M.1
  • 27
    • 0003391330 scopus 로고
    • Probabilistic Reasoning in Intelligence Systems
    • Morgan Kaufman Publishers
    • J. Pearl Probabilistic Reasoning in Intelligence Systems Series in Representation and Reasoning 1988 Morgan Kaufman Publishers
    • (1988) Series in Representation and Reasoning
    • Pearl, J.1
  • 28
    • 0022818911 scopus 로고
    • Evaluating influence diagrams
    • R.D. Shachter Evaluating influence diagrams Operations Research 34 6 1986 871 882
    • (1986) Operations Research , vol.34 , Issue.6 , pp. 871-882
    • Shachter, R.D.1
  • 29
    • 0024038570 scopus 로고
    • Probabilistic inference and influence diagrams
    • R.D. Shachter Probabilistic inference and influence diagrams Operations Research 36 4 1988 589 604
    • (1988) Operations Research , vol.36 , Issue.4 , pp. 589-604
    • Shachter, R.D.1
  • 32
    • 0001736479 scopus 로고    scopus 로고
    • Binary join trees for computing marginals in the Shenoy-Shafer architecture
    • P.P. Shenoy Binary join trees for computing marginals in the Shenoy-Shafer architecture IJAR 17 2-3 1997 239 263
    • (1997) IJAR , vol.17 , Issue.23 , pp. 239-263
    • Shenoy, P.P.1
  • 33
    • 80053213725 scopus 로고    scopus 로고
    • Inference in hybrid Bayesian networks using mixtures of Gaussians
    • P.P. Shenoy, Inference in hybrid Bayesian networks using mixtures of Gaussians, in: Proc. of UAI, 2006, pp. 428-436.
    • (2006) Proc. of UAI , pp. 428-436
    • Shenoy, P.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.