-
2
-
-
18144372623
-
-
See, e.g., Oxford University Press, New York
-
See, e.g., X.-G. Wen, Quantum Field Theory of Many-Body Systems (Oxford University Press, New York, 2004) for a pedagogical overview of the theoretical work.
-
(2004)
Quantum Field Theory of Many-Body Systems
-
-
Wen, X.-G.1
-
4
-
-
0037113463
-
-
10.1103/PhysRevB.66.205104
-
T. Senthil and O. Motrunich, Phys. Rev. B 66, 205104 (2002). 10.1103/PhysRevB.66.205104
-
(2002)
Phys. Rev. B
, vol.66
, pp. 205104
-
-
Senthil, T.1
Motrunich, O.2
-
5
-
-
2442430211
-
-
10.1103/PhysRevLett.92.096401;
-
D.-H. Lee and J. M. Leinaas, Phys. Rev. Lett. 92, 096401 (2004) 10.1103/PhysRevLett.92.096401
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 096401
-
-
Lee, D.-H.1
Leinaas, J.M.2
-
6
-
-
33244468607
-
-
10.1103/PhysRevLett.95.266405
-
A. Seidel, H. Fu, D.-H. Lee, J. M. Leinaas, and J. Moore, Phys. Rev. Lett. 95, 266405 (2005). 10.1103/PhysRevLett.95.266405
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 266405
-
-
Seidel, A.1
Fu, H.2
Lee, D.-H.3
Leinaas, J.M.4
Moore, J.5
-
8
-
-
0000915510
-
-
10.1088/0022-3719/17/12/003
-
D. J. Thouless, J. Phys. C 17, L325 (1984). 10.1088/0022-3719/17/12/003
-
(1984)
J. Phys. C
, vol.17
, pp. 325
-
-
Thouless, D.J.1
-
12
-
-
0642323621
-
-
10.1103/PhysRevLett.67.2729;
-
Z. Tesanovic and L. Xing, Phys. Rev. Lett. 67, 2729 (1991) 10.1103/PhysRevLett.67.2729
-
(1991)
Phys. Rev. Lett.
, vol.67
, pp. 2729
-
-
Tesanovic, Z.1
Xing, L.2
-
13
-
-
0028378616
-
-
10.1016/0921-4534(94)90916-4
-
Z. Tesanovic, Physica C 220, 303 (1994). 10.1016/0921-4534(94)90916-4
-
(1994)
Physica C
, vol.220
, pp. 303
-
-
Tesanovic, Z.1
-
14
-
-
26744447895
-
-
10.1103/PhysRevB.45.7336
-
M. A. Moore, Phys. Rev. B 45, 7336 (1992). 10.1103/PhysRevB.45.7336
-
(1992)
Phys. Rev. B
, vol.45
, pp. 7336
-
-
Moore, M.A.1
-
16
-
-
57649103859
-
-
10.1080/00018730802564122
-
N. R. Cooper, Adv. Phys. 57, 539 (2008). 10.1080/00018730802564122
-
(2008)
Adv. Phys.
, vol.57
, pp. 539
-
-
Cooper, N.R.1
-
19
-
-
22244440948
-
-
10.1103/PhysRevLett.50.1395
-
R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983). 10.1103/PhysRevLett.50. 1395
-
(1983)
Phys. Rev. Lett.
, vol.50
, pp. 1395
-
-
Laughlin, R.B.1
-
21
-
-
36149010740
-
-
10.1103/PhysRev.79.357
-
G. H. Wannier, Phys. Rev. 79, 357 (1950). 10.1103/PhysRev.79.357
-
(1950)
Phys. Rev.
, vol.79
, pp. 357
-
-
Wannier, G.H.1
-
22
-
-
0342690300
-
-
10.1016/0031-8914(50)90130-3
-
R. M. F. Houtappel, Physica (Amsterdam) 16, 425 (1950). 10.1016/0031-8914(50)90130-3
-
(1950)
Physica (Amsterdam)
, vol.16
, pp. 425
-
-
Houtappel, R.M.F.1
-
23
-
-
27144525875
-
-
10.1103/PhysRevLett.95.127205;
-
S. Wessel and M. Troyer, Phys. Rev. Lett. 95, 127205 (2005) 10.1103/PhysRevLett.95.127205
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 127205
-
-
Wessel, S.1
Troyer, M.2
-
24
-
-
27144529953
-
-
10.1103/PhysRevLett.95.127206;
-
D. Heidarian and K. Damle, Phys. Rev. Lett. 95, 127206 (2005) 10.1103/PhysRevLett.95.127206
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 127206
-
-
Heidarian, D.1
Damle, K.2
-
25
-
-
27144467475
-
-
10.1103/PhysRevLett.95.127207
-
R. G. Melko, A. Paramekanti, A. A. Burkov, A. Vishwanath, D. N. Sheng, and L. Balents, Phys. Rev. Lett. 95, 127207 (2005). 10.1103/PhysRevLett.95. 127207
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 127207
-
-
Melko, R.G.1
Paramekanti, A.2
Burkov, A.A.3
Vishwanath, A.4
Sheng, D.N.5
Balents, L.6
-
26
-
-
33744712217
-
-
10.1103/PhysRevB.41.9377
-
X.-G. Wen and Q. Niu, Phys. Rev. B 41, 9377 (1990). 10.1103/PhysRevB.41. 9377
-
(1990)
Phys. Rev. B
, vol.41
, pp. 9377
-
-
Wen, X.-G.1
Niu, Q.2
-
27
-
-
33144477218
-
-
10.1103/PhysRevLett.96.060601
-
M. Oshikawa and T. Senthil, Phys. Rev. Lett. 96, 060601 (2006). 10.1103/PhysRevLett.96.060601
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 060601
-
-
Oshikawa, M.1
Senthil, T.2
-
29
-
-
77955143623
-
-
The claim of broken time-reversal symmetry will perhaps appear less "exotic" in this context if one notices that the Abrikosov vortex lattice states in the magnetic Wannier description also in general spontaneously break time reversal, as they correspond to condensation into states with a definite Bloch momentum.
-
The claim of broken time-reversal symmetry will perhaps appear less "exotic" in this context if one notices that the Abrikosov vortex lattice states in the magnetic Wannier description also in general spontaneously break time reversal, as they correspond to condensation into states with a definite Bloch momentum.
-
-
-
-
31
-
-
34548404601
-
-
10.1103/PhysRevLett.99.097202
-
D. F. Schroeter, E. Kapit, R. Thomale, and M. Greiter, Phys. Rev. Lett. 99, 097202 (2007). 10.1103/PhysRevLett.99.097202
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 097202
-
-
Schroeter, D.F.1
Kapit, E.2
Thomale, R.3
Greiter, M.4
-
32
-
-
37249040018
-
-
10.1103/PhysRevLett.99.247203
-
H. Yao and S. A. Kivelson, Phys. Rev. Lett. 99, 247203 (2007). 10.1103/PhysRevLett.99.247203
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 247203
-
-
Yao, H.1
Kivelson, S.A.2
-
33
-
-
50849103387
-
-
10.1103/PhysRevB.78.054520;
-
D. N. Sheng, O. I. Motrunich, S. Trebst, E. Gull, and M. P. A. Fisher, Phys. Rev. B 78, 054520 (2008) 10.1103/PhysRevB.78.054520
-
(2008)
Phys. Rev. B
, vol.78
, pp. 054520
-
-
Sheng, D.N.1
Motrunich, O.I.2
Trebst, S.3
Gull, E.4
Fisher, M.P.A.5
|