-
4
-
-
24344490836
-
Stochastic delay population dynamics
-
BAHAR, A. & MAO, X. (2004b) Stochastic delay population dynamics. Int. J. Pure Appl. Math., 11, 377-400.
-
(2004)
Int. J. Pure Appl. Math.
, vol.11
, pp. 377-400
-
-
Bahar, A.1
Mao, X.2
-
5
-
-
0000839494
-
Global asymptotic stability of Lotka-Volterra diffusion models with continuous time delay
-
BERETTA, E. & TAKEUCHI, Y. (1988) Global asymptotic stability of Lotka-Volterra diffusion models with continuous time delay. SIAM J. Appl. Math., 48, 627-651.
-
(1988)
SIAM J. Appl. Math.
, vol.48
, pp. 627-651
-
-
Beretta, E.1
Takeuchi, Y.2
-
6
-
-
1542716847
-
Positive periodic solution for non-autonomous competition Lotka - Volterra patch system with time delay
-
DOI 10.1016/j.nonrwa.2003.08.001, PII S1468121803000701
-
CHEN, S., WANG, T. & ZHANG, J. (2004) Positive periodic solution for non-autonomous competition Lotka- Volterra path system with time delay. Nonlinear Anal. Real World Appl., 5, 409-419. (Pubitemid 38354768)
-
(2004)
Nonlinear Analysis: Real World Applications
, vol.5
, Issue.3
, pp. 409-419
-
-
Chen, S.1
Wang, T.2
Zhang, J.3
-
7
-
-
21644489601
-
A study of a class of stochastic differential equations with non-Lipschitzian coefficients
-
DOI 10.1007/s00440-004-0398-z
-
FANG, S. & ZHANG, T. (2005) A study of a class of stochastic differential equations with non-Lipschitzian coefficients. Prob. Theory Related Fields, 132, 356-390. (Pubitemid 40936943)
-
(2005)
Probability Theory and Related Fields
, vol.132
, Issue.3
, pp. 356-390
-
-
Fang, S.1
Zhang, T.2
-
8
-
-
48849083289
-
A functional equation characterizing monomial functions used in permanence theory for ecological differential equation
-
GARY, B. M. (2004) A functional equation characterizing monomial functions used in permanence theory for ecological differential equation. Univ. Lagel. Acta Math., Fasciculus XLII, 69-76.
-
(2004)
Univ. Lagel. Acta Math., Fasciculus
, vol.42
, pp. 69-76
-
-
Gary, B.M.1
-
9
-
-
4344689629
-
Persistence in stochastic food web models
-
GARD, T. C. (1984) Persistence in stochastic food web models. Bull. Math. Biol., 46, 357-370.
-
(1984)
Bull. Math. Biol.
, vol.46
, pp. 357-370
-
-
Gard, T.C.1
-
10
-
-
0026915354
-
Stochastic models for toxicant-stressed populations
-
GARD, T. C. (1992) Stochastic models for toxicant-stressed populations. Bull. Math. Biol., 54, 827-837.
-
(1992)
Bull. Math. Biol.
, vol.54
, pp. 827-837
-
-
Gard, T.C.1
-
11
-
-
33745182348
-
Persistence and average persistence of a nonautonomous Kolmogorov system
-
DOI 10.1016/j.chaos.2006.04.026, PII S0960077906003729
-
HAN, X., TENG, Z. & XIAO, D. (2006) Persistence and average persistence of a nonautonomous Kolmogorov system. Chaos Solitons Fractals, 30, 748-758. (Pubitemid 43903187)
-
(2006)
Chaos, Solitons and Fractals
, vol.30
, Issue.3
, pp. 748-758
-
-
Han, X.1
Teng, Z.2
Xiao, D.3
-
12
-
-
0018174331
-
Global stability in Lotka-Volterra systems with diffusion
-
HASTINGS, A. (1978) Global stability in Lotka-Volterra systems with diffusion. J. Math. Biol., 6, 163-168. (Pubitemid 8406820)
-
(1978)
Journal of Mathematical Biology
, vol.6
, Issue.2
, pp. 163-168
-
-
Hastings, A.1
-
13
-
-
0031260789
-
Persistence, attractivity, and delay in facultative mutualism
-
DOI 10.1006/jmaa.1997.5632, PII S0022247X97956328
-
HE, X. & GOPALSAMY, K. (1997) Persistence, attractivity, and delay in facultative mutualism. J. Math. Anal. Appl., 215, 154-173. (Pubitemid 127170547)
-
(1997)
Journal of Mathematical Analysis and Applications
, vol.215
, Issue.1
, pp. 154-173
-
-
He, X.-Z.1
Gopalsamy, K.2
-
14
-
-
0036885532
-
Stability for a competitive Lotka-Volterra system with delays
-
JIN, Z. & MA, Z. (2002) Stability for a competitive Lotka-Volterra system with delays. Nonlinear Anal. Theory Methods Appl., 51, 1131-1142.
-
(2002)
Nonlinear Anal. Theory Methods Appl.
, vol.51
, pp. 1131-1142
-
-
Jin, Z.1
Ma, Z.2
-
16
-
-
0001293981
-
Global stability for infinite delay Lotka-Volterra type system
-
KUANG, Y. & SMITH, H. L. (1993) Global stability for infinite delay Lotka-Volterra type system. J. Diff. Equ., 103, 221-246.
-
(1993)
J. Diff. Equ.
, vol.103
, pp. 221-246
-
-
Kuang, Y.1
Smith, H.L.2
-
20
-
-
33746315382
-
Delay population dynamics and environmental noise
-
DOI 10.1142/S021949370500133X, PII S021949370500133X
-
MAO, X. (2005) Delay population dynamics and environmental noise. Stoch. Dyn., 5, 149-162. (Pubitemid 44103059)
-
(2005)
Stochastics and Dynamics
, vol.5
, Issue.2
, pp. 149-162
-
-
Mao, X.1
-
21
-
-
0242563961
-
Environmental Brownian noise suppresses explosions in population dynamics
-
DOI 10.1016/S0304-4149(01)00126-0, PII S0304414901001260
-
MAO, X., MARION, G. & RENSHAW, E. (2002) Environmental noise suppresses explosion in population dynamics. Stoch. Process. Appl., 97, 95-110. (Pubitemid 40030718)
-
(2002)
Stochastic Processes and their Applications
, vol.97
, Issue.1
, pp. 95-110
-
-
Mao, X.1
Marion, G.2
Renshaw, E.3
-
22
-
-
24344494472
-
Khasminskii-type theorems for stochastic differential delay equations
-
DOI 10.1080/07362990500118637
-
MAO, X. & RASSIAS, M. J. (2005) Khasminskii-type theorems for stochastic differential delay equations. Stoch. Anal. Appl., 23, 1045-1069. (Pubitemid 41251364)
-
(2005)
Stochastic Analysis and Applications
, vol.23
, Issue.5
, pp. 1045-1069
-
-
Mao, X.1
Rassias, M.J.2
-
23
-
-
42949121935
-
Global dynamics behaviors for a nonautonomous Lotka-Volterra almost periodic dispersal system with delays
-
DOI 10.1016/j.na.2007.04.006, PII S0362546X07003045
-
MENG, X., JIAO, J. & CHEN, L. (2008) Global dynamics behaviors for a nonautonomous Lotka-Volterra almost periodic dispersal system with delays. Nonlinear Anal. Theory Methods Appl., 68, 3633-3645. (Pubitemid 351608460)
-
(2008)
Nonlinear Analysis, Theory, Methods and Applications
, vol.68
, Issue.12
, pp. 3633-3645
-
-
Meng, X.1
Jiao, J.2
Chen, L.3
-
24
-
-
7444272640
-
Persistence and global stability in Lotka-Volterra delay differential systems
-
MUROYA, Y. (2004) Persistence and global stability in Lotka-Volterra delay differential systems. Appl. Math. Lett., 17, 759-800.
-
(2004)
Appl. Math. Lett.
, vol.17
, pp. 759-800
-
-
Muroya, Y.1
-
25
-
-
33644662009
-
The improved LaSalle-type theorems for stochastic functional differential equations
-
DOI 10.1016/j.jmaa.2005.05.026, PII S0022247X05004695
-
SHEN, Y., LUO, Q. & MAO, X. (2006) The improved LaSalle-type theorems for stochastic functional differential equations. J. Math. Anal. Appl., 318, 134-154. (Pubitemid 43323718)
-
(2006)
Journal of Mathematical Analysis and Applications
, vol.318
, Issue.1
, pp. 134-154
-
-
Shen, Y.1
Luo, Q.2
Mao, X.3
-
26
-
-
0141799906
-
Long-time behaviour of a stochastic prey-predator model
-
DOI 10.1016/S0304-4149(03)00090-5, PII S0304414903000905
-
RUDNICKI, R. (2003) Long-time behaviour of a stochastic prey-predator model. Stoch. Process. Appl., 108, 93-107. (Pubitemid 37155248)
-
(2003)
Stochastic Processes and their Applications
, vol.108
, Issue.1
, pp. 93-107
-
-
Rudnicki, R.1
-
27
-
-
33847295610
-
Influence of stochastic perturbation on prey-predator systems
-
DOI 10.1016/j.mbs.2006.03.006, PII S0025556406000393, Alcala
-
RUDNICKI, R. & PICHOR, K. (2007) Influence of stochastic perturbation on prey-predator systems. Math. Biosci., 206, 108-119. (Pubitemid 46330422)
-
(2007)
Mathematical Biosciences
, vol.206
, Issue.1
, pp. 108-119
-
-
Rudnicki, R.1
Pichor, K.2
-
28
-
-
0029690373
-
Permanence in kolmogorov-type systems of nonautonomous functional differential equations
-
DOI 10.1006/jmaa.1996.0030
-
TANG, B. & KUANG, Y. (1996) Permanence in Kolmogorov-type systems of nonautonomous functional differential equations. J. Math. Anal. Appl., 197, 427-447. (Pubitemid 126170971)
-
(1996)
Journal of Mathematical Analysis and Applications
, vol.197
, Issue.2
, pp. 427-447
-
-
Tang, B.1
Kuang, Y.2
-
29
-
-
0343826890
-
The almost periodic Kolmogorov competitive Systems
-
TENG, Z. (2000) The almost periodic Kolmogorov competitive Systems. Nonlinear Anal. Theory Methods Appl., 42, 1221-1230.
-
(2000)
Nonlinear Anal. Theory Methods Appl.
, vol.42
, pp. 1221-1230
-
-
Teng, Z.1
-
30
-
-
0347758643
-
Positive periodic solutions of neutral Lotka-Volterra system with periodic delays
-
YANG, Z. & CAO, J. (2004) Positive periodic solutions of neutral Lotka-Volterra system with periodic delays. Appl. Math. Comput., 149, 661-687.
-
(2004)
Appl. Math. Comput.
, vol.149
, pp. 661-687
-
-
Yang, Z.1
Cao, J.2
|