메뉴 건너뛰기




Volumn 42, Issue 2, 2010, Pages 219-230

Principal components based support vector regression model for on-line instrument calibration monitoring in NPPS

Author keywords

On line calibration monitoring; Principal component; Response surface methodology; Support vector regression

Indexed keywords


EID: 77955071160     PISSN: 17385733     EISSN: None     Source Type: Journal    
DOI: 10.5516/NET.2010.42.2.219     Document Type: Article
Times cited : (7)

References (19)
  • 1
    • 0026817991 scopus 로고
    • Application of neural networks for sensor validation and plant monitoring
    • Upadhyaya, B. R., and E. Eryurek (1992), "Application of Neural Networks for Sensor Validation and Plant Monitoring", Nuclear Technology, 97, 170-176 (February 1992).
    • (1992) Nuclear Technology , vol.97 , pp. 170-176
    • Upadhyaya, B.R.1    Eryurek, E.2
  • 3
    • 34547419173 scopus 로고    scopus 로고
    • Performance comparison of variable selection and grouping algorithms
    • SmartSignal Corp
    • Wegerich, S. (2002), "Performance Comparison of Variable Selection and Grouping Algorithms", Technical Report, SmartSignal Corp.
    • (2002) Technical Report
    • Wegerich, S.1
  • 5
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik. Support vector networks, Machine Learning 20: 273-297, 1995.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 7
    • 34047139165 scopus 로고    scopus 로고
    • Support vector machines for nuclear reactor state estimation
    • Pittsburgh, USA
    • N. Zavaljevski and K. C. Gross. "Support Vector Machines for Nuclear Reactor State Estimation", ANS International Topical Meeting May 7-11, 2000, Pittsburgh, USA
    • (2000) ANS International Topical Meeting , pp. 7-11
    • Zavaljevski, N.1    Gross, K.C.2
  • 11
    • 33847148421 scopus 로고    scopus 로고
    • Modeling of temperature-frequency correlation using combined principal component analysis and support vector regression technique
    • X. G. Hua, Y. Q. Ni, J. M. Ko, F. ASCE and K. Y. Wong. "Modeling of Temperature-Frequency Correlation Using Combined Principal Component Analysis and Support Vector Regression Technique", journal of computing in civil engineering march/April 2007, 122-135
    • (2007) Journal of Computing in Civil Engineering , pp. 122-135
    • Hua, X.G.1    Ni, Y.Q.2    Ko, J.M.3    Asce, F.4    Wong, K.Y.5
  • 15
    • 33748340523 scopus 로고    scopus 로고
    • A neuro-fuzzy inference system for sensor failure detection using wavelet denosing, PCA and SPRT
    • M. G . Na, "A Neuro-Fuzzy Inference System for Sensor Failure Detection Using Wavelet Denosing, PCA and SPRT," J. Korean Nucl. Soc., vol 33, no.5, pp483-497, Oct. 2001.
    • (2001) J. Korean Nucl. Soc. , vol.33 , Issue.5 , pp. 483-497
    • Na, M.G.1
  • 16
    • 44249092590 scopus 로고    scopus 로고
    • A soft-sensing model for feedwater flow rate using fuzzy support vector regression
    • M. G. Na, H. Y. Yang, D. H. Lim, "A Soft-sensing Model for Feedwater Flow Rate Using Fuzzy Support Vector Regression," Nucl. Eng. Tech., vol 40, no.1, pp69-76, Feb. 2008.
    • (2008) Nucl. Eng. Tech. , vol.40 , Issue.1 , pp. 69-76
    • Na, M.G.1    Yang, H.Y.2    Lim, D.H.3
  • 17
    • 33748354468 scopus 로고    scopus 로고
    • Inferential sensing and monitoring for feedwater flowrate in pressurized water reactors
    • M. G. Na, I. J. Hwang, and Y. J. Lee, "Inferential Sensing and Monitoring for Feedwater Flowrate in Pressurized Water Reactors," IEEE Trans. Nucl. Sci., vol.53, no.4, pp. 2335-2342, 2006.
    • (2006) IEEE Trans. Nucl. Sci. , vol.53 , Issue.4 , pp. 2335-2342
    • Na, M.G.1    Hwang, I.J.2    Lee, Y.J.3
  • 18
    • 70449575902 scopus 로고    scopus 로고
    • An on-line monitoring technique using support vector regression and principal component analysis
    • Vienna, Austria
    • I. Y. Seo, and S. J. Kim, "An On-line Monitoring Technique Using Support Vector Regression and Principal Component Analysis" CIMCA 2008, Vienna, Austria, pp. 663-669. 2008.
    • (2008) CIMCA 2008 , pp. 663-669
    • Seo, I.Y.1    Kim, S.J.2
  • 19
    • 34548258307 scopus 로고    scopus 로고
    • On-line support vector regression approach for the monitoring of motor shaft misalignment and feedwater flow rate
    • Man, Cybernetics, Part C
    • O. Omitaomu, M. K. Jeong, A. Badiru, and J. W. Hines, "On-Line Support Vector Regression Approach for the Monitoring of Motor Shaft Misalignment and Feedwater Flow Rate," IEEE Transactions on Systems, Man, Cybernetics, Part C, 37(5), 962-970. 2007.
    • (2007) IEEE Transactions on Systems , vol.37 , Issue.5 , pp. 962-970
    • Omitaomu, O.1    Jeong, M.K.2    Badiru, A.3    Hines, J.W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.