메뉴 건너뛰기




Volumn 344, Issue 1, 2010, Pages 4-6

Apical constriction and invagination: A very self-reliant couple

Author keywords

[No Author keywords available]

Indexed keywords

ACTIN MYOSIN INTERACTION; CELL ADHESION; CELL ELONGATION; CELL SHAPE; CELL SPECIFICITY; CELL TRANSFORMATION; CYTOSKELETON; DEVELOPMENT; GENE MUTATION; MOLECULAR BIOLOGY; MORPHOGENESIS; NONHUMAN; PRIORITY JOURNAL; REVIEW; THEORETICAL MODEL;

EID: 77955056146     PISSN: 00121606     EISSN: 1095564X     Source Type: Journal    
DOI: 10.1016/j.ydbio.2010.05.498     Document Type: Review
Times cited : (9)

References (22)
  • 1
    • 62349121930 scopus 로고    scopus 로고
    • Pushing the frontiers of development
    • Bellaiche Y., Munro E. Pushing the frontiers of development. Development 2009, 136:173-177.
    • (2009) Development , vol.136 , pp. 173-177
    • Bellaiche, Y.1    Munro, E.2
  • 2
    • 71449083102 scopus 로고    scopus 로고
    • Repression of Wasp by JAK/STAT signalling inhibits medial actomyosin network assembly and apical cell constriction in intercalating epithelial cells
    • Bertet C., Rauzi M., Lecuit T. Repression of Wasp by JAK/STAT signalling inhibits medial actomyosin network assembly and apical cell constriction in intercalating epithelial cells. Development 2009, 136:4199-4212.
    • (2009) Development , vol.136 , pp. 4199-4212
    • Bertet, C.1    Rauzi, M.2    Lecuit, T.3
  • 3
    • 33745612064 scopus 로고    scopus 로고
    • The RhoGAP crossveinless-c links trachealess and EGFR signaling to cell shape remodeling in Drosophila tracheal invagination
    • Brodu V., Casanova J. The RhoGAP crossveinless-c links trachealess and EGFR signaling to cell shape remodeling in Drosophila tracheal invagination. Genes Dev. 2006, 20:1817-1828.
    • (2006) Genes Dev. , vol.20 , pp. 1817-1828
    • Brodu, V.1    Casanova, J.2
  • 4
    • 70350179623 scopus 로고    scopus 로고
    • Cdc42- and IRSp53-dependent contractile filopodia tether presumptive lens and retina to coordinate epithelial invagination
    • Chauhan B.K., Disanza A., Choi S.Y., Faber S.C., Lou M., Beggs H.E., Scita G., Zheng Y., Lang R.A. Cdc42- and IRSp53-dependent contractile filopodia tether presumptive lens and retina to coordinate epithelial invagination. Development 2009, 136:3657-3667.
    • (2009) Development , vol.136 , pp. 3657-3667
    • Chauhan, B.K.1    Disanza, A.2    Choi, S.Y.3    Faber, S.C.4    Lou, M.5    Beggs, H.E.6    Scita, G.7    Zheng, Y.8    Lang, R.A.9
  • 5
    • 65349166917 scopus 로고    scopus 로고
    • Robust mechanisms of ventral furrow invagination require the combination of cellular shape changes
    • Conte V., Munoz J.J., Baum B., Miodownik M. Robust mechanisms of ventral furrow invagination require the combination of cellular shape changes. Phys. Biol. 2009, 6:016010.
    • (2009) Phys. Biol. , vol.6 , pp. 016010
    • Conte, V.1    Munoz, J.J.2    Baum, B.3    Miodownik, M.4
  • 6
    • 0029005577 scopus 로고
    • How do sea urchins invaginate? Using biomechanics to distinguish between mechanisms of primary invagination
    • Davidson L.A., Koehl M.A., Keller R., Oster G.F. How do sea urchins invaginate? Using biomechanics to distinguish between mechanisms of primary invagination. Development 1995, 121:2005-2018.
    • (1995) Development , vol.121 , pp. 2005-2018
    • Davidson, L.A.1    Koehl, M.A.2    Keller, R.3    Oster, G.F.4
  • 8
    • 0001652018 scopus 로고
    • The cellular basis of morphogenesis and sea urchin development
    • Gustafson T., Wolpert L. The cellular basis of morphogenesis and sea urchin development. Int. Rev. Cytol. 1963, 15:139-214.
    • (1963) Int. Rev. Cytol. , vol.15 , pp. 139-214
    • Gustafson, T.1    Wolpert, L.2
  • 9
    • 0023915074 scopus 로고
    • The behaviour and function of bottle cells during gastrulation of Xenopus laevis
    • Hardin J., Keller R. The behaviour and function of bottle cells during gastrulation of Xenopus laevis. Development 1988, 103:211-230.
    • (1988) Development , vol.103 , pp. 211-230
    • Hardin, J.1    Keller, R.2
  • 10
    • 77956295880 scopus 로고    scopus 로고
    • Modelling apical constriction in epithelia using elastic shell theory
    • Jones G.W., Chapman S.J. Modelling apical constriction in epithelia using elastic shell theory. Biomech. Model. Mechanobiol. 2009.
    • (2009) Biomech. Model. Mechanobiol.
    • Jones, G.W.1    Chapman, S.J.2
  • 11
    • 0038410006 scopus 로고    scopus 로고
    • How we are shaped: the biomechanics of gastrulation
    • Keller R., Davidson L.A., Shook D.R. How we are shaped: the biomechanics of gastrulation. Differentiation 2003, 71:171-205.
    • (2003) Differentiation , vol.71 , pp. 171-205
    • Keller, R.1    Davidson, L.A.2    Shook, D.R.3
  • 12
    • 35348814980 scopus 로고    scopus 로고
    • Actomyosin contractility and microtubules drive apical constriction in Xenopus bottle cells
    • Lee J.Y., Harland R.M. Actomyosin contractility and microtubules drive apical constriction in Xenopus bottle cells. Dev. Biol. 2007, 311:40-52.
    • (2007) Dev. Biol. , vol.311 , pp. 40-52
    • Lee, J.Y.1    Harland, R.M.2
  • 13
    • 0025080165 scopus 로고
    • Cell shape changes during gastrulation in Drosophila
    • Leptin M., Grunewald B. Cell shape changes during gastrulation in Drosophila. Development 1990, 110:73-84.
    • (1990) Development , vol.110 , pp. 73-84
    • Leptin, M.1    Grunewald, B.2
  • 14
    • 58749084302 scopus 로고    scopus 로고
    • Pulsed contractions of an actin-myosin network drive apical constriction
    • Martin A.C., Kaschube M., Wieschaus E.F. Pulsed contractions of an actin-myosin network drive apical constriction. Nature 2009, 457:495-499.
    • (2009) Nature , vol.457 , pp. 495-499
    • Martin, A.C.1    Kaschube, M.2    Wieschaus, E.F.3
  • 16
    • 38349070345 scopus 로고    scopus 로고
    • A wave of EGFR signaling determines cell alignment and intercalation in the Drosophila tracheal placode
    • Nishimura M., Inoue Y., Hayashi S. A wave of EGFR signaling determines cell alignment and intercalation in the Drosophila tracheal placode. Development 2007, 134:4273-4282.
    • (2007) Development , vol.134 , pp. 4273-4282
    • Nishimura, M.1    Inoue, Y.2    Hayashi, S.3
  • 19
    • 37749041391 scopus 로고    scopus 로고
    • Epithelial type, ingression, blastopore architecture and the evolution of chordate mesoderm morphogenesis
    • Shook D.R., Keller R. Epithelial type, ingression, blastopore architecture and the evolution of chordate mesoderm morphogenesis. J. Exp. Zool. B Mol. Dev. Evol. 2008, 310:85-110.
    • (2008) J. Exp. Zool. B Mol. Dev. Evol. , vol.310 , pp. 85-110
    • Shook, D.R.1    Keller, R.2
  • 20
    • 0023883336 scopus 로고
    • Role of cell-cycle in regulating neuroepithelial cell shape during bending of the chick neural plate
    • Smith J.L., Schoenwolf G.C. Role of cell-cycle in regulating neuroepithelial cell shape during bending of the chick neural plate. Cell Tissue Res. 1988, 252:491-500.
    • (1988) Cell Tissue Res. , vol.252 , pp. 491-500
    • Smith, J.L.1    Schoenwolf, G.C.2
  • 21
    • 15744401970 scopus 로고    scopus 로고
    • Conserved patterns of cell movements during vertebrate gastrulation
    • Solnica-Krezel L. Conserved patterns of cell movements during vertebrate gastrulation. Curr. Biol. 2005, 15:R213-R228.
    • (2005) Curr. Biol. , vol.15
    • Solnica-Krezel, L.1
  • 22
    • 0025812705 scopus 로고
    • Gastrulation in Drosophila: the formation of the ventral furrow and posterior midgut invaginations
    • Sweeton D., Parks S., Costa M., Wieschaus E. Gastrulation in Drosophila: the formation of the ventral furrow and posterior midgut invaginations. Development 1991, 112:775-789.
    • (1991) Development , vol.112 , pp. 775-789
    • Sweeton, D.1    Parks, S.2    Costa, M.3    Wieschaus, E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.