메뉴 건너뛰기




Volumn 80, Issue 15-16, 2010, Pages 1242-1252

Marginal longitudinal semiparametric regression via penalized splines

Author keywords

Additive models; Best prediction; Gibbs sampling; Maximum likelihood; Nonparametric regression; Restricted maximum likelihood; Varying coefficient models

Indexed keywords


EID: 77955052807     PISSN: 01677152     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.spl.2010.04.002     Document Type: Article
Times cited : (6)

References (35)
  • 2
    • 8644284225 scopus 로고    scopus 로고
    • Histospline method in nonparametric regression models with application to clustered/longitudinal data
    • Carroll R.J., Hall P., Apanasovich T.V., Lin X. Histospline method in nonparametric regression models with application to clustered/longitudinal data. Statistica Sinica 2004, 14:649-674.
    • (2004) Statistica Sinica , vol.14 , pp. 649-674
    • Carroll, R.J.1    Hall, P.2    Apanasovich, T.V.3    Lin, X.4
  • 3
    • 66249142283 scopus 로고    scopus 로고
    • Nonparametric additive regression for repeatedly measured data
    • Carroll R.J., Maity A., Mammen E., Yu K. Nonparametric additive regression for repeatedly measured data. Biometrika 2009, 96:383-398.
    • (2009) Biometrika , vol.96 , pp. 383-398
    • Carroll, R.J.1    Maity, A.2    Mammen, E.3    Yu, K.4
  • 4
    • 77955057609 scopus 로고    scopus 로고
    • Efficient semiparametric marginal estimation for the partially linear additive model for longitudinal/clustered data
    • Carroll R.J., Maity A., Mammen E., Yu K. Efficient semiparametric marginal estimation for the partially linear additive model for longitudinal/clustered data. Statistics in Biosciences 2009, 1:10-31.
    • (2009) Statistics in Biosciences , vol.1 , pp. 10-31
    • Carroll, R.J.1    Maity, A.2    Mammen, E.3    Yu, K.4
  • 5
    • 15844389302 scopus 로고    scopus 로고
    • Local polynomial regression analysis of clustered data
    • Chen K., Jin Z. Local polynomial regression analysis of clustered data. Biometrika 2005, 92:59-74.
    • (2005) Biometrika , vol.92 , pp. 59-74
    • Chen, K.1    Jin, Z.2
  • 6
    • 0035015945 scopus 로고    scopus 로고
    • Simple incorporation of interactions into additive models
    • Coull B.A., Ruppert D., Wand M.P. Simple incorporation of interactions into additive models. Biometrics 2001, 57:539-545.
    • (2001) Biometrics , vol.57 , pp. 539-545
    • Coull, B.A.1    Ruppert, D.2    Wand, M.P.3
  • 8
    • 34250768880 scopus 로고    scopus 로고
    • Analysis of longitudinal data with semiparametric estimation of covariance function
    • Fan J., Huang T., Li R. Analysis of longitudinal data with semiparametric estimation of covariance function. Journal of the American Statistical Association 2007, 102:632-641.
    • (2007) Journal of the American Statistical Association , vol.102 , pp. 632-641
    • Fan, J.1    Huang, T.2    Li, R.3
  • 9
    • 69049121379 scopus 로고    scopus 로고
    • Semiparametric estimation of covariance matrixes for longitudinal data
    • Fan J., Wu Y. Semiparametric estimation of covariance matrixes for longitudinal data. Journal of the American Statistical Association 2008, 103:1520-1533.
    • (2008) Journal of the American Statistical Association , vol.103 , pp. 1520-1533
    • Fan, J.1    Wu, Y.2
  • 10
    • 0032887209 scopus 로고    scopus 로고
    • Marginally specified logistic-normal models for longitudinal binary data
    • Heagerty P.J. Marginally specified logistic-normal models for longitudinal binary data. Biometrics 1999, 55:688-698.
    • (1999) Biometrics , vol.55 , pp. 688-698
    • Heagerty, P.J.1
  • 11
    • 24944484263 scopus 로고    scopus 로고
    • Profile-kernel versus backfitting in the partially linear models for longitudinal/clustered data
    • Hu Z.H., Wang N., Carroll R.J. Profile-kernel versus backfitting in the partially linear models for longitudinal/clustered data. Biometrika 2004, 91:251-262.
    • (2004) Biometrika , vol.91 , pp. 251-262
    • Hu, Z.H.1    Wang, N.2    Carroll, R.J.3
  • 13
    • 44849098150 scopus 로고    scopus 로고
    • On the asymptotics of penalized splines
    • Li Y., Ruppert D. On the asymptotics of penalized splines. Biometrika 2008, 95:415-436.
    • (2008) Biometrika , vol.95 , pp. 415-436
    • Li, Y.1    Ruppert, D.2
  • 14
    • 1542427460 scopus 로고    scopus 로고
    • Nonparametric function estimation for clustered data when the predictor is measured without/with error
    • Lin X., Carroll R.J. Nonparametric function estimation for clustered data when the predictor is measured without/with error. Journal of the American Statistical Association 2000, 95:520-534.
    • (2000) Journal of the American Statistical Association , vol.95 , pp. 520-534
    • Lin, X.1    Carroll, R.J.2
  • 15
    • 0442312205 scopus 로고    scopus 로고
    • Semiparametric regression for clustered data using generalized estimating equations
    • Lin X., Carroll R.J. Semiparametric regression for clustered data using generalized estimating equations. Journal of the American Statistical Association 2001, 96:1045-1056.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 1045-1056
    • Lin, X.1    Carroll, R.J.2
  • 17
    • 3543023777 scopus 로고    scopus 로고
    • Equivalent kernels of smoothing splines in nonparametric regression for clustered/longitudinal data
    • Lin X., Wang N., Welsh A.H., Carroll R.J. Equivalent kernels of smoothing splines in nonparametric regression for clustered/longitudinal data. Biometrika 2004, 91:177-193.
    • (2004) Biometrika , vol.91 , pp. 177-193
    • Lin, X.1    Wang, N.2    Welsh, A.H.3    Carroll, R.J.4
  • 19
    • 77955055358 scopus 로고    scopus 로고
    • BRugs 0.5-3: Analysis of graphical models using MCMC techniques. R package.
    • Ligges, U., Thomas, A., Spiegelhalter, D., Best, N., Lunn, D., Rice, K., Sturtz, S., 2009. BRugs 0.5-3: Analysis of graphical models using MCMC techniques. R package. http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/2.10.
    • (2009)
    • Ligges, U.1    Thomas, A.2    Spiegelhalter, D.3    Best, N.4    Lunn, D.5    Rice, K.6    Sturtz, S.7
  • 20
    • 0006407254 scopus 로고    scopus 로고
    • WinBUGS-a Bayesian modelling framework: concepts, structure, and extensibility
    • Lunn D.J., Thomas A., Best N., Spiegelhalter D. WinBUGS-a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing 2000, 10:325-337.
    • (2000) Statistics and Computing , vol.10 , pp. 325-337
    • Lunn, D.J.1    Thomas, A.2    Best, N.3    Spiegelhalter, D.4
  • 21
    • 77956889208 scopus 로고
    • Recovery of inter-block information when block sizes are unequal
    • Patterson H.D., Thompson R. Recovery of inter-block information when block sizes are unequal. Biometrika 1971, 58:545-554.
    • (1971) Biometrika , vol.58 , pp. 545-554
    • Patterson, H.D.1    Thompson, R.2
  • 22
    • 77955050670 scopus 로고    scopus 로고
    • The R Core Team, nlme 3.1: linear and nonlinear mixed effects models. R package.
    • Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., The R Core Team, 2009. nlme 3.1: linear and nonlinear mixed effects models. R package. http://www.R-project.org.
    • (2009)
    • Pinheiro, J.1    Bates, D.2    DebRoy, S.3    Sarkar, D.4
  • 23
    • 77955049274 scopus 로고    scopus 로고
    • R Development Core Team, R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN: 3-900051-07-0.
    • R Development Core Team, 2009. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN: 3-900051-07-0. http://www.R-project.org.
    • (2009)
  • 25
    • 84972496336 scopus 로고
    • That BLUP is a good thing: the estimation of random effects
    • Robinson G.K. That BLUP is a good thing: the estimation of random effects. Statistical Science 1991, 6:15-51.
    • (1991) Statistical Science , vol.6 , pp. 15-51
    • Robinson, G.K.1
  • 28
    • 50849130235 scopus 로고    scopus 로고
    • Estimation of the covariance matrix of random effects in longitudinal studies
    • Sun Y., Zhang W., Tong H. Estimation of the covariance matrix of random effects in longitudinal studies. The Annals of Statistics 2007, 35:2795-2814.
    • (2007) The Annals of Statistics , vol.35 , pp. 2795-2814
    • Sun, Y.1    Zhang, W.2    Tong, H.3
  • 30
    • 3543029715 scopus 로고    scopus 로고
    • Marginal nonparametric kernel regression accounting for within-subject correlation
    • Wang N. Marginal nonparametric kernel regression accounting for within-subject correlation. Biometrika 2003, 90:43-52.
    • (2003) Biometrika , vol.90 , pp. 43-52
    • Wang, N.1
  • 33
    • 0035998825 scopus 로고    scopus 로고
    • Marginal longitudinal nonparametric regression: locality and efficiency of spline and kernel methods
    • Welsh A.H., Lin X., Carroll R.J. Marginal longitudinal nonparametric regression: locality and efficiency of spline and kernel methods. Journal of the American Statistical Association 2002, 97:482-493.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 482-493
    • Welsh, A.H.1    Lin, X.2    Carroll, R.J.3
  • 34
    • 0028153316 scopus 로고
    • Semiparametric models for longitudinal data with application to CD4 cell numbers in HIV seroconverters
    • Zeger S., Diggle P.J. Semiparametric models for longitudinal data with application to CD4 cell numbers in HIV seroconverters. Biometrics 1994, 50:689-699.
    • (1994) Biometrics , vol.50 , pp. 689-699
    • Zeger, S.1    Diggle, P.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.