-
1
-
-
0003271387
-
Geometric nonlinear functional analysis. Vol. 1, colloq
-
Zbl 0946.46002 MR 1727673
-
Benyamini, Y., Lindenstrauss, J.: Geometric Nonlinear Functional Analysis. Vol.1, Colloq. Publ. 48, Amer. Math. Soc. (2000) Zbl 0946.46002 MR 1727673
-
(2000)
Publ. 48, Amer. Math. Soc.
-
-
Benyamini, Y.1
Lindenstrauss, J.2
-
2
-
-
84966213239
-
A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions
-
Zbl 0632.49008 MR 0902782
-
Borwein, J. M., Preiss, D.: A smooth variational principle with applications to sub- differentiability and to differentiability of convex functions. Trans. Amer. Math. Soc. 303, 517-528 (1987) Zbl 0632.49008 MR 0902782
-
(1987)
Trans. Amer. Math. Soc.
, vol.303
, pp. 517-528
-
-
Borwein, J.M.1
Preiss, D.2
-
3
-
-
26644431576
-
Cone monotone functions, differentiability and continuity
-
Zbl 1095.49015 MR 2164591
-
Borwein, J. M., Wang, X.: Cone monotone functions, differentiability and continuity. Canad. J. Math. 57, 961-982 (2005) Zbl 1095.49015 MR 2164591
-
(2005)
Canad. J. Math.
, vol.57
, pp. 961-982
-
-
Borwein, J.M.1
Wang, X.2
-
4
-
-
0003293351
-
Smoothness and renormings in banach spaces
-
Longman Zbl 0782.46019 MR 1211634
-
Deville, R., Godefroy, G., Zizler, V.: Smoothness and Renormings in Banach Spaces. Pitman Monogr. Surveys 64, Longman (1993) Zbl 0782.46019 MR 1211634
-
(1993)
Pitman Monogr. Surveys
, vol.64
-
-
Deville, R.1
Godefroy, G.2
Zizler, V.3
-
5
-
-
0000305685
-
A new proof of fréchet differentiability of Lipschitz functions
-
Zbl 0968.58006 MR 1776937
-
Lindenstrauss, J., Preiss, D.: A new proof of Fréchet differentiability of Lipschitz functions, J. Eur. Math. Soc. 2, 199-216 (2000) Zbl 0968.58006 MR 1776937
-
(2000)
J. Eur. Math. Soc.
, vol.2
, pp. 199-216
-
-
Lindenstrauss, J.1
Preiss, D.2
-
7
-
-
33646919809
-
Gâteaux differentiable lipschitz functions need not be frechet differentiable on a residual set
-
Zbl 0518.46032 MR 0683783
-
Preiss, D.: Gâteaux differentiable Lipschitz functions need not be Frechet differentiable on a residual set. Suppl. Rend. Circ. Mat. Palermo (2) 2, 217-222 (1982) Zbl 0518.46032 MR 0683783
-
(1982)
Suppl. Rend. Circ. Mat. Palermo
, vol.2
, Issue.2
, pp. 217-222
-
-
Preiss, D.1
-
8
-
-
51249179604
-
Gâteaux differentiable functions are somewhere fréchet differentiable
-
Zbl 0573.46024 MR 0743214
-
Preiss, D.: Gâteaux differentiable functions are somewhere Fréchet differentiable. Rend. Circ. Mat. Palermo (2) 33, 122-133 (1984) Zbl 0573.46024 MR 0743214
-
(1984)
Rend. Circ. Mat. Palermo
, vol.33
, Issue.2
, pp. 122-133
-
-
Preiss, D.1
-
9
-
-
0000107568
-
Differentiability of lipschitz functions on banach spaces
-
Zbl 0711.46036 MR 1058975
-
Preiss, D.: Differentiability of Lipschitz functions on Banach spaces. J. Funct. Anal. 91, 312-345 (1990) Zbl 0711.46036 MR 1058975
-
(1990)
J. Funct. Anal.
, vol.91
, pp. 312-345
-
-
Preiss, D.1
-
10
-
-
0040660104
-
Two unexpected examples concerning differentiability of lipschitz functions on banach spaces
-
Zbl 0872.46026 MR 1353461
-
Preiss, D., Tišer, J.: Two unexpected examples concerning differentiability of Lipschitz functions on Banach spaces. GAFA Israel Seminar 92-94, Birkhauser, 219-238 (1995) Zbl 0872.46026 MR 1353461
-
(1995)
GAFA Israel Seminar 92-94 Birkhauser
, pp. 219-238
-
-
Preiss, D.1
Tišer, J.2
|