-
1
-
-
77954890484
-
-
http://en.wikipedia.org/wiki/Klee'smeasureproblem.
-
-
-
-
2
-
-
35348815511
-
Computing the volume of the union of cubes
-
P. K. Agarwal, H. Kaplan, and M. Sharir, Computing the volume of the union of cubes, Proc. 23rd Annu. Sympos. Comput. Geom., 2007, 294.301.
-
(2007)
Proc. 23rd Annu. Sympos. Comput. Geom.
, pp. 294301
-
-
Agarwal, P.K.1
Kaplan, H.2
Sharir, M.3
-
3
-
-
0003772933
-
-
2nd edition, Springer Verlag, Heidelberg
-
M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf, Computational Geometry: Algorithms and Applications, 2nd edition, Springer Verlag, Heidelberg, 2000.
-
(2000)
Computational Geometry: Algorithms and Applications
-
-
De Berg, M.1
Van Kreveld, M.2
Overmars, M.3
Schwarzkopf, O.4
-
4
-
-
0003428927
-
-
Unpublished notes, Computer Science Department, Carnegie Mellon University
-
J. L. Bentley, Algorithms for Klee's rectangle problems. Unpublished notes, Computer Science Department, Carnegie Mellon University, 1977.
-
(1977)
Algorithms for Klee's Rectangle Problems
-
-
Bentley, J.L.1
-
5
-
-
0038897223
-
Voronoi diagrams in higher dimensions under certain polyhedral distance functions
-
J.D. Boissonnat, M. Sharir, B. Tagansky and M. Yvinec, Voronoi diagrams in higher dimensions under certain polyhedral distance functions, Discrete Comput. Geom. 19 (1998), 485-519. (Pubitemid 128352841)
-
(1998)
Discrete and Computational Geometry
, vol.19
, Issue.4
, pp. 485-519
-
-
Boissonnat, J.-D.1
Sharir, M.2
Tagansky, B.3
Yvinec, M.4
-
7
-
-
84867922154
-
A (slightly) faster algorithm for Klee's measure problem
-
T. M. Chan, A (slightly) faster algorithm for Klee's measure problem, Comput. Geom.: Theory Appls. 43 (2010), 243-250.
-
(2010)
Comput. Geom.: Theory Appls.
, vol.43
, pp. 243-250
-
-
Chan, T.M.1
-
10
-
-
0000567874
-
K-d trees are better when cut on the longest side
-
M. Dickerson, C. A. Duncan, and M. T. Goodrich, K-d trees are better when cut on the longest side, Proc. 8th European Sympos. Algorithms, 2000, 179190.
-
(2000)
Proc. 8th European Sympos. Algorithms
, pp. 179190
-
-
Dickerson, M.1
Duncan, C.A.2
Goodrich, M.T.3
-
12
-
-
0009819641
-
The measure problem for rectangular ranges in d-space
-
J. van Leeuwen and D. Wood, The measure problem for rectangular ranges in d-space, J. Algorithms 2 (1981), 282-300.
-
(1981)
J. Algorithms
, vol.2
, pp. 282-300
-
-
Van Leeuwen, J.1
Wood, D.2
-
13
-
-
0040738477
-
i] be computed in less than O(n log n) steps?
-
i] be computed in less than O(n log n) steps? Amer. Math. Monthly 84 (1977), 284-285.
-
(1977)
Amer. Math. Monthly
, vol.84
, pp. 284-285
-
-
Klee, V.1
-
14
-
-
0019625505
-
Maintenance of configurations in the plane
-
M. Overmars and J. Leeuwen, Maintenance of configurations in the plane, J. Comput. Syst. Sci. 23 (1981), 166-204.
-
(1981)
J. Comput. Syst. Sci.
, vol.23
, pp. 166-204
-
-
Overmars, M.1
Leeuwen, J.2
-
15
-
-
0026406169
-
New upper bounds in Klee's measure problem
-
M. Overmars and C.K. Yap, New upper bounds in Klee's measure problem, SIAM J. Comput. 20 (1991), 1034-1045.
-
(1991)
SIAM J. Comput.
, vol.20
, pp. 1034-1045
-
-
Overmars, M.1
Yap, C.K.2
-
16
-
-
58549093044
-
An average running time analysis of a backtracking algorithm to calculate the measure of the union of hyperrectangles in d dimensions
-
S. Suzuki and T. Ibaki, An average running time analysis of a backtracking algorithm to calculate the measure of the union of hyperrectangles in d dimensions, Proc. 16th Canadian Conf. Comput. Geom., 2004, 196-199.
-
(2004)
Proc. 16th Canadian Conf. Comput. Geom.
, pp. 196-199
-
-
Suzuki, S.1
Ibaki, T.2
|