메뉴 건너뛰기




Volumn 36, Issue C, 2010, Pages 9-15

Md-MST is NP-hard for d ≥ 3

Author keywords

Computational complexity; Node degree constraints; Proof by reduction; Spanning tree

Indexed keywords


EID: 77954918693     PISSN: 15710653     EISSN: 15710653     Source Type: Journal    
DOI: 10.1016/j.endm.2010.05.002     Document Type: Article
Times cited : (14)

References (6)
  • 1
    • 77954910997 scopus 로고    scopus 로고
    • "Min-Degree Constrained Minimum Spanning Tree Problem: Complexity, properties, and formulations", Working Paper 6 , Center for Operational Research of the University of Lisbon
    • Almeida, A.M.de, P.C. Martins, and M. Souza, "Min-Degree Constrained Minimum Spanning Tree Problem: Complexity, properties, and formulations", Working Paper 6 (2006), Center for Operational Research of the University of Lisbon.
    • (2006)
    • Almeida, A.M.1    Martins, P.C.2    Souza, M.3
  • 4
    • 21144470704 scopus 로고
    • Transitions in geometric minimum spanning trees
    • Monma C., Suri S. Transitions in geometric minimum spanning trees. Discrete Computational Geometry 1992, 8:265-293.
    • (1992) Discrete Computational Geometry , vol.8 , pp. 265-293
    • Monma, C.1    Suri, S.2
  • 6
    • 0037854822 scopus 로고
    • On two geometric problems related to the traveling salesman problem
    • Papadimitriou C.H., Vazirani U.V. On two geometric problems related to the traveling salesman problem. Journal of Algorithms 1984, 5:231-246.
    • (1984) Journal of Algorithms , vol.5 , pp. 231-246
    • Papadimitriou, C.H.1    Vazirani, U.V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.