메뉴 건너뛰기




Volumn 29, Issue 5, 2010, Pages 486-501

Forecasting business failure in China using case-based reasoning with hybrid case respresentation

Author keywords

Business failure prediction (BFP); Case representation; Feature selection and extraction; Hybrid case based reasoning (HCBR); Principal component analysis (PCA)

Indexed keywords

CASE BASED REASONING; DISCRIMINANT ANALYSIS; EXTRACTION; FEATURE SELECTION; FORECASTING; MULTIVARIANT ANALYSIS; NEAREST NEIGHBOR SEARCH;

EID: 77954908396     PISSN: 02776693     EISSN: 1099131X     Source Type: Journal    
DOI: 10.1002/for.1149     Document Type: Article
Times cited : (24)

References (28)
  • 1
    • 0000032342 scopus 로고    scopus 로고
    • How effective are neural networks at forecasting and prediction? A review and evaluation
    • Adya M, Collopy F. 1998. How effective are neural networks at forecasting and prediction? A review and evaluation. Journal of Forecasting 17(5-6): 481-495.
    • (1998) Journal of Forecasting , vol.17 , Issue.5-6 , pp. 481-495
    • Adya, M.1    Collopy, F.2
  • 2
    • 84980104458 scopus 로고
    • Financial ratios, discriminant analysis and the prediction of corporate bankruptcy
    • Altman EI. 1968. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance 23: 589-609.
    • (1968) Journal of Finance , vol.23 , pp. 589-609
    • Altman, E.I.1
  • 3
    • 0031521259 scopus 로고    scopus 로고
    • Credit risk measurement: Developments over the last 20 years
    • Altman EI, Saunders A. 1998. Credit risk measurement: developments over the last 20 years. Journal of Banking and Finance 21(11-12): 1721-1742.
    • (1998) Journal of Banking and Finance , vol.21 , Issue.11-12 , pp. 1721-1742
    • Altman, E.I.1    Saunders, A.2
  • 5
    • 38649138750 scopus 로고    scopus 로고
    • Forecasting financial condition of Chinese listed companies based on support vector machine
    • Ding Y, Song X, Zeng Y. 2008. Forecasting financial condition of Chinese listed companies based on support vector machine. Expert Systems with Applications 34(4): 3081-3089.
    • (2008) Expert Systems with Applications , vol.34 , Issue.4 , pp. 3081-3089
    • Ding, Y.1    Song, X.2    Zeng, Y.3
  • 6
    • 33846454686 scopus 로고    scopus 로고
    • Predicting corporate financial distress based on integration of support vector machine and logistic regression
    • Hua Z, Wang Y, Xu X, Zhang B, Liang L. 2007. Predicting corporate financial distress based on integration of support vector machine and logistic regression. Expert Systems with Applications 33(2): 434-440.
    • (2007) Expert Systems with Applications , vol.33 , Issue.2 , pp. 434-440
    • Hua, Z.1    Wang, Y.2    Xu, X.3    Zhang, B.4    Liang, L.5
  • 7
    • 33745625856 scopus 로고    scopus 로고
    • An application of support vector machine to companies' financial distress prediction
    • Torra V, Narukawa Y, Valls A et al. (eds). Springer: Berlin
    • Hui X-F, Sun J. 2006. An application of support vector machine to companies' financial distress prediction. In Modeling Decisions for Artificial Intelligence, Torra V, Narukawa Y, Valls A et al. (eds). Springer: Berlin: 274-282.
    • (2006) Modeling Decisions for Artificial Intelligence , pp. 274-282
    • Hui, X.-F.1    Sun, J.2
  • 8
    • 0031199479 scopus 로고    scopus 로고
    • Bankruptcy prediction using case-based reasoning, neural network and discriminant analysis for bankruptcy prediction
    • Jo H, Han I, Lee H. 1997. Bankruptcy prediction using case-based reasoning, neural network and discriminant analysis for bankruptcy prediction. Expert Systems with Applications 13(2): 97-108.
    • (1997) Expert Systems with Applications , vol.13 , Issue.2 , pp. 97-108
    • Jo, H.1    Han, I.2    Lee, H.3
  • 9
    • 54949111332 scopus 로고    scopus 로고
    • Ranking-order case-based reasoning for fi nancial distress prediction
    • Li H, Sun J. 2008. Ranking-order case-based reasoning for fi nancial distress prediction. Knowledge-Based Systems 21(8): 868-878.
    • (2008) Knowledge-based Systems , vol.21 , Issue.8 , pp. 868-878
    • Li, H.1    Sun, J.2
  • 10
    • 58349092749 scopus 로고    scopus 로고
    • Majority voting combination of multiple case-based reasoning for fi nancial distress prediction
    • Li H, Sun J. 2009a. Majority voting combination of multiple case-based reasoning for fi nancial distress prediction. Expert Systems with Applications 36(3): 4363-4373.
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 , pp. 4363-4373
    • Li, H.1    Sun, J.2
  • 11
    • 55249100209 scopus 로고    scopus 로고
    • Gaussian case-based reasoning for business failure prediction with empirical data in China
    • Li H, Sun J. 2009b. Gaussian case-based reasoning for business failure prediction with empirical data in China. Information Sciences 179(1-2): 89-108.
    • (2009) Information Sciences , vol.179 , Issue.1-2 , pp. 89-108
    • Li, H.1    Sun, J.2
  • 13
    • 53849129254 scopus 로고    scopus 로고
    • Financial distress prediction based on OR-CBR in the principle of k-nearest neighbors
    • Li H, Sun J, Sun B-L. 2009. Financial distress prediction based on OR-CBR in the principle of k-nearest neighbors. Expert Systems with Applications 39(1): 643-659.
    • (2009) Expert Systems with Applications , vol.39 , Issue.1 , pp. 643-659
    • Li, H.1    Sun, J.2    Sun, B.-L.3
  • 14
    • 0035371292 scopus 로고    scopus 로고
    • A data mining approach to the prediction of corporate failure
    • Lin F-Y, McClean S. 2001. A data mining approach to the prediction of corporate failure. Knowledge-Based Systems 14: 189-195.
    • (2001) Knowledge-based Systems , vol.14 , pp. 189-195
    • Lin, F.-Y.1    McClean, S.2
  • 15
    • 0348197047 scopus 로고    scopus 로고
    • Rough sets bankruptcy prediction models versus auditor signaling rates
    • McKee TE. 2003. Rough sets bankruptcy prediction models versus auditor signaling rates. Journal of Forecasting 22(8): 569-586.
    • (2003) Journal of Forecasting , vol.22 , Issue.8 , pp. 569-586
    • McKee, T.E.1
  • 16
    • 17844363481 scopus 로고    scopus 로고
    • Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters
    • Min J-H, Lee Y-C. 2005. Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters. Expert Systems with Applications 28: 603-614.
    • (2005) Expert Systems with Applications , vol.28 , pp. 603-614
    • Min, J.-H.1    Lee, Y.-C.2
  • 17
    • 33744925661 scopus 로고    scopus 로고
    • Hybrid genetic algorithms and support vector machines for bankruptcy prediction
    • Min S-H, Lee J, Han I. 2006. Hybrid genetic algorithms and support vector machines for bankruptcy prediction. Expert Systems with Applications 31(3): 652-660.
    • (2006) Expert Systems with Applications , vol.31 , Issue.3 , pp. 652-660
    • Min, S.-H.1    Lee, J.2    Han, I.3
  • 18
    • 0000666375 scopus 로고
    • Financial ratios and the probabilistic prediction of bankruptcy
    • Ohlson JA. 1980. Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research 18: 109-131.
    • (1980) Journal of Accounting Research , vol.18 , pp. 109-131
    • Ohlson, J.A.1
  • 19
    • 0036776641 scopus 로고    scopus 로고
    • A case-based reasoning with the feature weights derived by analytic hierarchy process for bankruptcy prediction
    • Park C-S, Han I. 2002. A case-based reasoning with the feature weights derived by analytic hierarchy process for bankruptcy prediction. Expert Systems with Applications 23(3): 255-264.
    • (2002) Expert Systems with Applications , vol.23 , Issue.3 , pp. 255-264
    • Park, C.-S.1    Han, I.2
  • 20
    • 53049094001 scopus 로고    scopus 로고
    • DEA as a tool for bankruptcy assessment: A comparative study with logistic regression technique
    • Premachandra IM, Bhabra G, Sueyoshi T. 2009. DEA as a tool for bankruptcy assessment: a comparative study with logistic regression technique. European Journal of Operational Research 192(2): 412-424.
    • (2009) European Journal of Operational Research , vol.192 , Issue.2 , pp. 412-424
    • Premachandra, I.M.1    Bhabra, G.2    Sueyoshi, T.3
  • 21
    • 50149113096 scopus 로고    scopus 로고
    • Threshold accepting trained principal component neural network and feature subset selection: Application to bankruptcy prediction in banks
    • Ravi V, Pramodh C. 2008. Threshold accepting trained principal component neural network and feature subset selection: application to bankruptcy prediction in banks. Applied Soft Computing 8(4): 1539-1548.
    • (2008) Applied Soft Computing , vol.8 , Issue.4 , pp. 1539-1548
    • Ravi, V.1    Pramodh, C.2
  • 22
    • 0035521221 scopus 로고    scopus 로고
    • Bayesian models for early warning of bank failures
    • Sarkar S, Sriram RS. 2001. Bayesian models for early warning of bank failures. Management Science 47(11): 1457-1475.
    • (2001) Management Science , vol.47 , Issue.11 , pp. 1457-1475
    • Sarkar, S.1    Sriram, R.S.2
  • 23
    • 33749376158 scopus 로고    scopus 로고
    • Financial distress prediction based on similarity weighted voting CBR
    • Li X, Zaiane R, Li Z (eds). Springer: Berlin
    • Sun J, Hui X-F. 2006. Financial distress prediction based on similarity weighted voting CBR. In Advanced Data Mining and Applications, Li X, Zaiane R, Li Z (eds). Springer: Berlin; 947-958.
    • (2006) Advanced Data Mining and Applications , pp. 947-958
    • Sun, J.1    Hui, X.-F.2
  • 24
    • 41749100893 scopus 로고    scopus 로고
    • Data mining method for listed companies' financial distress prediction
    • Sun J, Li H. 2008. Data mining method for listed companies' financial distress prediction. Knowledge-Based Systems 21(1): 1-5.
    • (2008) Knowledge-based Systems , vol.21 , Issue.1 , pp. 1-5
    • Sun, J.1    Li, H.2
  • 25
    • 53749101228 scopus 로고    scopus 로고
    • Financial distress early warning based on group decision making
    • Sun J, Li H. 2009. Financial distress early warning based on group decision making. Computers and Operations Research 36(3): 885-906.
    • (2009) Computers and Operations Research , vol.36 , Issue.3 , pp. 885-906
    • Sun, J.1    Li, H.2
  • 26
    • 33846660949 scopus 로고    scopus 로고
    • Using Bayesian networks for bankruptcy prediction: Some methodological issues
    • Sun L, Shenoy PP. 2007. Using Bayesian networks for bankruptcy prediction: some methodological issues. European Journal of Operational Research 180(2): 738-753.
    • (2007) European Journal of Operational Research , vol.180 , Issue.2 , pp. 738-753
    • Sun, L.1    Shenoy, P.P.2
  • 27
    • 38649113538 scopus 로고    scopus 로고
    • Using neural network ensembles for bankruptcy prediction and credit scoring
    • Tsai C-F, Wu J-W. 2008. Using neural network ensembles for bankruptcy prediction and credit scoring. Expert Systems with Applications 34(4): 2639-2649.
    • (2008) Expert Systems with Applications , vol.34 , Issue.4 , pp. 2639-2649
    • Tsai, C.-F.1    Wu, J.-W.2
  • 28
    • 0033074333 scopus 로고    scopus 로고
    • Probabilistic neural networks in bankruptcy prediction
    • Yang Z, Platt M, Platt H. 1999. Probabilistic neural networks in bankruptcy prediction, Journal of Business Research 44(2): 67-74.
    • (1999) Journal of Business Research , vol.44 , Issue.2 , pp. 67-74
    • Yang, Z.1    Platt, M.2    Platt, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.