-
2
-
-
36549104958
-
-
10.1063/1.334817
-
C. P. Kuo, S. K. Vong, R. M. Cohen, and G. B. Stringfellow, J. Appl. Phys. 57, 5428 (1985). 10.1063/1.334817
-
(1985)
J. Appl. Phys.
, vol.57
, pp. 5428
-
-
Kuo, C.P.1
Vong, S.K.2
Cohen, R.M.3
Stringfellow, G.B.4
-
4
-
-
0004513145
-
-
10.1063/1.119454
-
Y. Suzuki, H. Y. Hwang, S. W. Cheong, and R. B. van Dover, Appl. Phys. Lett. 71, 140 (1997). 10.1063/1.119454
-
(1997)
Appl. Phys. Lett.
, vol.71
, pp. 140
-
-
Suzuki, Y.1
Hwang, H.Y.2
Cheong, S.W.3
Van Dover, R.B.4
-
5
-
-
0001131229
-
-
10.1063/1.123634
-
T. K. Nath, R. A. Rao, D. Lavric, C. B. Eom, L. Wu, and F. Tsui, Appl. Phys. Lett. 74, 1615 (1999). 10.1063/1.123634
-
(1999)
Appl. Phys. Lett.
, vol.74
, pp. 1615
-
-
Nath, T.K.1
Rao, R.A.2
Lavric, D.3
Eom, C.B.4
Wu, L.5
Tsui, F.6
-
8
-
-
0031341015
-
-
10.1016/S0167-5729(97)00010-1
-
H. Ibach, Surf. Sci. Rep. 29, 195 (1997). 10.1016/S0167-5729(97)00010-1
-
(1997)
Surf. Sci. Rep.
, vol.29
, pp. 195
-
-
Ibach, H.1
-
10
-
-
0035009563
-
-
10.1088/0034-4885/64/5/201
-
W. Haiss, Rep. Prog. Phys. 64, 591 (2001). 10.1088/0034-4885/64/5/201
-
(2001)
Rep. Prog. Phys.
, vol.64
, pp. 591
-
-
Haiss, W.1
-
11
-
-
0001484101
-
-
10.1063/1.373830
-
K. O. Schweitz, J. Bøttiger, J. Chevallier, R. Feidenhans'l, N. M. Nielsen, and F. B. Rasmussen, J. Appl. Phys. 88, 1401 (2000). 10.1063/1.373830
-
(2000)
J. Appl. Phys.
, vol.88
, pp. 1401
-
-
Schweitz, K.O.1
Bøttiger, J.2
Chevallier, J.3
Feidenhans'L, R.4
Nielsen, N.M.5
Rasmussen, F.B.6
-
16
-
-
0000476669
-
-
10.1103/PhysRevB.45.6074
-
N. Chetty and R. M. Martin, Phys. Rev. B 45, 6074 (1992). 10.1103/PhysRevB.45.6074
-
(1992)
Phys. Rev. B
, vol.45
, pp. 6074
-
-
Chetty, N.1
Martin, R.M.2
-
17
-
-
0001044489
-
-
10.1103/PhysRevB.34.8296
-
N. O. Folland, Phys. Rev. B 34, 8296 (1986). 10.1103/PhysRevB.34.8296
-
(1986)
Phys. Rev. B
, vol.34
, pp. 8296
-
-
Folland, N.O.1
-
18
-
-
0000087088
-
-
10.1103/PhysRevB.37.10176
-
M. J. Godfrey, Phys. Rev. B 37, 10176 (1988). 10.1103/PhysRevB.37.10176
-
(1988)
Phys. Rev. B
, vol.37
, pp. 10176
-
-
Godfrey, M.J.1
-
20
-
-
0036612535
-
-
10.1103/PhysRevB.65.224117
-
C. L. Rogers and A. M. Rappe, Phys. Rev. B 65, 224117 (2002). 10.1103/PhysRevB.65.224117
-
(2002)
Phys. Rev. B
, vol.65
, pp. 224117
-
-
Rogers, C.L.1
Rappe, A.M.2
-
23
-
-
0007037036
-
-
10.1103/PhysRevB.57.7281
-
K. Rapcewicz, B. Chen, B. Yakobson, and J. Bernholc, Phys. Rev. B 57, 7281 (1998). 10.1103/PhysRevB.57.7281
-
(1998)
Phys. Rev. B
, vol.57
, pp. 7281
-
-
Rapcewicz, K.1
Chen, B.2
Yakobson, B.3
Bernholc, J.4
-
25
-
-
20544463457
-
-
10.1103/PhysRevB.41.7892
-
D. Vanderbilt, Phys. Rev. B 41, 7892 (1990). 10.1103/PhysRevB.41.7892
-
(1990)
Phys. Rev. B
, vol.41
, pp. 7892
-
-
Vanderbilt, D.1
-
26
-
-
25744460922
-
-
10.1103/PhysRevB.50.17953
-
P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). 10.1103/PhysRevB.50. 17953
-
(1994)
Phys. Rev. B
, vol.50
, pp. 17953
-
-
Blöchl, P.E.1
-
27
-
-
0011236321
-
-
10.1103/PhysRevB.59.1758
-
G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). 10.1103/PhysRevB.59.1758
-
(1999)
Phys. Rev. B
, vol.59
, pp. 1758
-
-
Kresse, G.1
Joubert, D.2
-
28
-
-
35648994439
-
-
10.1103/PhysRevB.76.153310
-
S. Ishibashi, T. Tamura, S. Tanaka, M. Kohyama, and K. Terakura, Phys. Rev. B 76, 153310 (2007). 10.1103/PhysRevB.76.153310
-
(2007)
Phys. Rev. B
, vol.76
, pp. 153310
-
-
Ishibashi, S.1
Tamura, T.2
Tanaka, S.3
Kohyama, M.4
Terakura, K.5
-
29
-
-
0001348111
-
-
10.1103/PhysRevB.50.1908
-
P. J. Feibelman, Phys. Rev. B 50, 1908 (1994). 10.1103/PhysRevB.50.1908
-
(1994)
Phys. Rev. B
, vol.50
, pp. 1908
-
-
Feibelman, P.J.1
-
30
-
-
0002218114
-
-
10.1103/PhysRevLett.58.53
-
R. J. Needs, Phys. Rev. Lett. 58, 53 (1987). 10.1103/PhysRevLett.58.53
-
(1987)
Phys. Rev. Lett.
, vol.58
, pp. 53
-
-
Needs, R.J.1
-
31
-
-
0001393490
-
-
10.1103/PhysRevB.42.10933
-
R. J. Needs and M. J. Godfrey, Phys. Rev. B 42, 10933 (1990). 10.1103/PhysRevB.42.10933
-
(1990)
Phys. Rev. B
, vol.42
, pp. 10933
-
-
Needs, R.J.1
Godfrey, M.J.2
-
32
-
-
77954868072
-
-
Strictly speaking, ταβ in the present definition should be called as stress field instead of stress density because this does not express the density distribution. Thus the macroscopic stress is given by the volume-average as Eq. . However, according to Ref., we use the term of stress density as the same meaning of stress field for simplicity.
-
Strictly speaking, τ α β in the present definition should be called as stress field instead of stress density because this does not express the density distribution. Thus the macroscopic stress is given by the volume-average as Eq.. However, according to Ref., we use the term of stress density as the same meaning of stress field for simplicity.
-
-
-
-
33
-
-
0000192466
-
-
10.1103/PhysRev.51.846
-
J. C. Slater, Phys. Rev. 51, 846 (1937). 10.1103/PhysRev.51.846
-
(1937)
Phys. Rev.
, vol.51
, pp. 846
-
-
Slater, J.C.1
-
35
-
-
77954883392
-
-
The Definitive Edition Vol. Pearson, Addison-Wesley, San Francisco
-
R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, The Definitive Edition Vol. 2 (Pearson, Addison-Wesley, San Francisco, 2006), pp. 15.14-15.16.
-
(2006)
The Feynman Lectures on Physics
, vol.2
, pp. 1514-1516
-
-
Feynman, R.P.1
Leighton, R.B.2
Sands, M.3
-
36
-
-
77954880065
-
-
In ultrasoft pseudopotential method or PAW method, the stress component due to an overlap operator need to be added.
-
In ultrasoft pseudopotential method or PAW method, the stress component due to an overlap operator need to be added.
-
-
-
-
38
-
-
0010051850
-
-
10.1007/BF01331237
-
A. Kugler, Z. Phys. 198, 236 (1967). 10.1007/BF01331237
-
(1967)
Z. Phys.
, vol.198
, pp. 236
-
-
Kugler, A.1
-
42
-
-
0000736726
-
-
10.1103/PhysRevB.28.5480
-
C. L. Fu and K. M. Ho, Phys. Rev. B 28, 5480 (1983). 10.1103/PhysRevB.28. 5480
-
(1983)
Phys. Rev. B
, vol.28
, pp. 5480
-
-
Fu, C.L.1
Ho, K.M.2
-
44
-
-
77954880397
-
-
In addition, the present scheme can uniquely determine such a region Vi in Eq. to define the local stress while the scheme in Ref. uses an ambiguous local region for the exchange-correlation terms coupled with the decomposition of the other energy and stress terms into local atomic-orbital basis. This ambiguity is not a problem when considering the layer-by-layer contribution to the surface stress but it becomes considerably impeditive when one try to develop the local stress scheme aiming for a three-dimensional local stress analysis.
-
In addition, the present scheme can uniquely determine such a region V i in Eq. to define the local stress while the scheme in Ref. uses an ambiguous local region for the exchange-correlation terms coupled with the decomposition of the other energy and stress terms into local atomic-orbital basis. This ambiguity is not a problem when considering the layer-by-layer contribution to the surface stress but it becomes considerably impeditive when one try to develop the local stress scheme aiming for a three-dimensional local stress analysis.
-
-
-
-
45
-
-
33344475028
-
-
10.1103/PhysRevB.71.195416
-
J. L. F. Da Silva, Phys. Rev. B 71, 195416 (2005). 10.1103/PhysRevB.71. 195416
-
(2005)
Phys. Rev. B
, vol.71
, pp. 195416
-
-
Da Silva, J.L.F.1
-
46
-
-
0006278248
-
-
10.1103/PhysRevLett.65.729
-
P. J. Feibelman, Phys. Rev. Lett. 65, 729 (1990). 10.1103/PhysRevLett.65. 729
-
(1990)
Phys. Rev. Lett.
, vol.65
, pp. 729
-
-
Feibelman, P.J.1
-
47
-
-
0034295223
-
-
10.1103/PhysRevLett.85.3862
-
K. Carling, G. Wahnström, T. R. Mattsson, A. E. Mattsson, N. Sandberg, and G. Grimvall, Phys. Rev. Lett. 85, 3862 (2000). 10.1103/PhysRevLett.85.3862
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 3862
-
-
Carling, K.1
Wahnström, G.2
Mattsson, T.R.3
Mattsson, A.E.4
Sandberg, N.5
Grimvall, G.6
-
49
-
-
60849108046
-
-
10.2320/matertrans.MD200820
-
R. Z. Wang, M. Kohyama, S. Tanaka, T. Tamura, and S. Ishibashi, Mater. Trans. 50, 11 (2009). 10.2320/matertrans.MD200820
-
(2009)
Mater. Trans.
, vol.50
, pp. 11
-
-
Wang, R.Z.1
Kohyama, M.2
Tanaka, S.3
Tamura, T.4
Ishibashi, S.5
-
51
-
-
0000750490
-
-
10.1016/0039-6028(76)90250-8
-
F. K. Schulte, Surf. Sci. 55, 427 (1976). 10.1016/0039-6028(76)90250-8
-
(1976)
Surf. Sci.
, vol.55
, pp. 427
-
-
Schulte, F.K.1
|