-
1
-
-
3442895828
-
-
10.1103/PhysRevLett.69.2863
-
S. R. White, Phys. Rev. Lett. 69, 2863 (1992). 10.1103/PhysRevLett.69. 2863
-
(1992)
Phys. Rev. Lett.
, vol.69
, pp. 2863
-
-
White, S.R.1
-
2
-
-
20044389808
-
-
10.1103/PhysRevB.48.10345
-
S. R. White, Phys. Rev. B 48, 10345 (1993). 10.1103/PhysRevB.48.10345
-
(1993)
Phys. Rev. B
, vol.48
, pp. 10345
-
-
White, S.R.1
-
3
-
-
23844520141
-
The density-matrix renormalization group
-
DOI 10.1103/RevModPhys.77.259
-
U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005). 10.1103/RevModPhys. 77.259 (Pubitemid 41490660)
-
(2005)
Reviews of Modern Physics
, vol.77
, Issue.1
, pp. 259-315
-
-
Schollwock, U.1
-
4
-
-
4244095121
-
-
10.1103/PhysRevLett.75.3537
-
S. Östlund and S. Rommer, Phys. Rev. Lett. 75, 3537 (1995). 10.1103/PhysRevLett.75.3537
-
(1995)
Phys. Rev. Lett.
, vol.75
, pp. 3537
-
-
Östlund, S.1
Rommer, S.2
-
5
-
-
0039466933
-
-
10.1103/PhysRevB.55.2164
-
S. Rommer and S. Östlund, Phys. Rev. B 55, 2164 (1997). 10.1103/PhysRevB.55.2164
-
(1997)
Phys. Rev. B
, vol.55
, pp. 2164
-
-
Rommer, S.1
Östlund, S.2
-
6
-
-
33144490422
-
Renormalization algorithm for the calculation of spectra of interacting quantum systems
-
DOI 10.1103/PhysRevB.73.014410, 014410
-
D. Porras, F. Verstraete, and J. I. Cirac, Phys. Rev. B 73, 014410 (2006). 10.1103/PhysRevB.73.014410 (Pubitemid 43270363)
-
(2006)
Physical Review B - Condensed Matter and Materials Physics
, vol.73
, Issue.1
, pp. 1-7
-
-
Porras, D.1
Verstraete, F.2
Cirac, J.I.3
-
7
-
-
0242425255
-
-
10.1103/PhysRevLett.91.147902
-
G. Vidal, Phys. Rev. Lett. 91, 147902 (2003). 10.1103/PhysRevLett.91. 147902
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 147902
-
-
Vidal, G.1
-
8
-
-
37649026836
-
Density matrix renormalization group and periodic boundary conditions: A quantum information perspective
-
DOI 10.1103/PhysRevLett.93.227205, 227205
-
F. Verstraete, D. Porras, and J. I. Cirac, Phys. Rev. Lett. 93, 227205 (2004). 10.1103/PhysRevLett.93.227205 (Pubitemid 40072806)
-
(2004)
Physical Review Letters
, vol.93
, Issue.22
, pp. 2272051-2272054
-
-
Verstraete, F.1
Porras, D.2
Cirac, J.I.3
-
9
-
-
28844508772
-
Exploiting quantum parallelism to simulate quantum random many-body systems
-
DOI 10.1103/PhysRevLett.95.140501, 140501
-
B. Paredes, F. Verstraete, and J. I. Cirac, Phys. Rev. Lett. 95, 140501 (2005). 10.1103/PhysRevLett.95.140501 (Pubitemid 41777557)
-
(2005)
Physical Review Letters
, vol.95
, Issue.14
, pp. 1-4
-
-
Paredes, B.1
Verstraete, F.2
Cirac, J.I.3
-
10
-
-
77954866870
-
-
arXiv:cond-mat/0407066 (unpublished).
-
F. Verstraete and J. Cirac, arXiv:cond-mat/0407066 (unpublished).
-
-
-
Verstraete, F.1
Cirac, J.2
-
11
-
-
33846978099
-
-
10.1103/PhysRevLett.98.070201
-
G. Vidal, Phys. Rev. Lett. 98, 070201 (2007). 10.1103/PhysRevLett.98. 070201
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 070201
-
-
Vidal, G.1
-
12
-
-
38849113308
-
Simulation of quantum many-body systems with strings of operators and Monte Carlo tensor contractions
-
DOI 10.1103/PhysRevLett.100.040501
-
N. Schuch, M. M. Wolf, F. Verstraete, and J. I. Cirac, Phys. Rev. Lett. 100, 040501 (2008). 10.1103/PhysRevLett.100.040501 (Pubitemid 351191356)
-
(2008)
Physical Review Letters
, vol.100
, Issue.4
, pp. 040501
-
-
Schuch, N.1
Wolf, M.M.2
Verstraete, F.3
Cirac, J.I.4
-
13
-
-
36649005167
-
Variational quantum Monte Carlo simulations with tensor-network states
-
DOI 10.1103/PhysRevLett.99.220602
-
A. W. Sandvik and G. Vidal, Phys. Rev. Lett. 99, 220602 (2007). 10.1103/PhysRevLett.99.220602 (Pubitemid 350198451)
-
(2007)
Physical Review Letters
, vol.99
, Issue.22
, pp. 220602
-
-
Sandvik, A.W.1
Vidal, G.2
-
14
-
-
34447647603
-
-
D. Perez-Garcia, F. Verstraete, M. Wolf, and J. Cirac, Quantum Inf. Comput. 7, 401 (2007).
-
(2007)
Quantum Inf. Comput.
, vol.7
, pp. 401
-
-
Perez-Garcia, D.1
Verstraete, F.2
Wolf, M.3
Cirac, J.4
-
15
-
-
77954870993
-
-
(private communication).
-
F. Verstraete (private communication).
-
-
-
Verstraete, F.1
-
17
-
-
77954876719
-
-
Denote v as an m2 vector and V as the elements of v aligned as an m×m matrix. Then one can use the relation (A⊗B ) v=Vec (BV AT ) to perform a matrix-vector product.
-
Denote v as an m 2 vector and V as the elements of v aligned as an m × m matrix. Then one can use the relation (A ⊗ B) v = Vec (B V A T) to perform a matrix-vector product.
-
-
-
-
18
-
-
77954877320
-
-
A Lanczos approach would take an additional factor for convergence.
-
A Lanczos approach would take an additional factor for convergence.
-
-
-
|