메뉴 건너뛰기




Volumn 81, Issue 8, 2010, Pages

Efficient matrix-product state method for periodic boundary conditions

Author keywords

[No Author keywords available]

Indexed keywords


EID: 77954884613     PISSN: 10980121     EISSN: 1550235X     Source Type: Journal    
DOI: 10.1103/PhysRevB.81.081103     Document Type: Article
Times cited : (91)

References (18)
  • 1
    • 3442895828 scopus 로고
    • 10.1103/PhysRevLett.69.2863
    • S. R. White, Phys. Rev. Lett. 69, 2863 (1992). 10.1103/PhysRevLett.69. 2863
    • (1992) Phys. Rev. Lett. , vol.69 , pp. 2863
    • White, S.R.1
  • 2
    • 20044389808 scopus 로고
    • 10.1103/PhysRevB.48.10345
    • S. R. White, Phys. Rev. B 48, 10345 (1993). 10.1103/PhysRevB.48.10345
    • (1993) Phys. Rev. B , vol.48 , pp. 10345
    • White, S.R.1
  • 3
    • 23844520141 scopus 로고    scopus 로고
    • The density-matrix renormalization group
    • DOI 10.1103/RevModPhys.77.259
    • U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005). 10.1103/RevModPhys. 77.259 (Pubitemid 41490660)
    • (2005) Reviews of Modern Physics , vol.77 , Issue.1 , pp. 259-315
    • Schollwock, U.1
  • 4
  • 5
    • 0039466933 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.55.2164
    • S. Rommer and S. Östlund, Phys. Rev. B 55, 2164 (1997). 10.1103/PhysRevB.55.2164
    • (1997) Phys. Rev. B , vol.55 , pp. 2164
    • Rommer, S.1    Östlund, S.2
  • 7
    • 0242425255 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.91.147902
    • G. Vidal, Phys. Rev. Lett. 91, 147902 (2003). 10.1103/PhysRevLett.91. 147902
    • (2003) Phys. Rev. Lett. , vol.91 , pp. 147902
    • Vidal, G.1
  • 8
    • 37649026836 scopus 로고    scopus 로고
    • Density matrix renormalization group and periodic boundary conditions: A quantum information perspective
    • DOI 10.1103/PhysRevLett.93.227205, 227205
    • F. Verstraete, D. Porras, and J. I. Cirac, Phys. Rev. Lett. 93, 227205 (2004). 10.1103/PhysRevLett.93.227205 (Pubitemid 40072806)
    • (2004) Physical Review Letters , vol.93 , Issue.22 , pp. 2272051-2272054
    • Verstraete, F.1    Porras, D.2    Cirac, J.I.3
  • 9
    • 28844508772 scopus 로고    scopus 로고
    • Exploiting quantum parallelism to simulate quantum random many-body systems
    • DOI 10.1103/PhysRevLett.95.140501, 140501
    • B. Paredes, F. Verstraete, and J. I. Cirac, Phys. Rev. Lett. 95, 140501 (2005). 10.1103/PhysRevLett.95.140501 (Pubitemid 41777557)
    • (2005) Physical Review Letters , vol.95 , Issue.14 , pp. 1-4
    • Paredes, B.1    Verstraete, F.2    Cirac, J.I.3
  • 10
    • 77954866870 scopus 로고    scopus 로고
    • arXiv:cond-mat/0407066 (unpublished).
    • F. Verstraete and J. Cirac, arXiv:cond-mat/0407066 (unpublished).
    • Verstraete, F.1    Cirac, J.2
  • 11
    • 33846978099 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.98.070201
    • G. Vidal, Phys. Rev. Lett. 98, 070201 (2007). 10.1103/PhysRevLett.98. 070201
    • (2007) Phys. Rev. Lett. , vol.98 , pp. 070201
    • Vidal, G.1
  • 12
    • 38849113308 scopus 로고    scopus 로고
    • Simulation of quantum many-body systems with strings of operators and Monte Carlo tensor contractions
    • DOI 10.1103/PhysRevLett.100.040501
    • N. Schuch, M. M. Wolf, F. Verstraete, and J. I. Cirac, Phys. Rev. Lett. 100, 040501 (2008). 10.1103/PhysRevLett.100.040501 (Pubitemid 351191356)
    • (2008) Physical Review Letters , vol.100 , Issue.4 , pp. 040501
    • Schuch, N.1    Wolf, M.M.2    Verstraete, F.3    Cirac, J.I.4
  • 13
    • 36649005167 scopus 로고    scopus 로고
    • Variational quantum Monte Carlo simulations with tensor-network states
    • DOI 10.1103/PhysRevLett.99.220602
    • A. W. Sandvik and G. Vidal, Phys. Rev. Lett. 99, 220602 (2007). 10.1103/PhysRevLett.99.220602 (Pubitemid 350198451)
    • (2007) Physical Review Letters , vol.99 , Issue.22 , pp. 220602
    • Sandvik, A.W.1    Vidal, G.2
  • 15
    • 77954870993 scopus 로고    scopus 로고
    • (private communication).
    • F. Verstraete (private communication).
    • Verstraete, F.1
  • 17
    • 77954876719 scopus 로고    scopus 로고
    • Denote v as an m2 vector and V as the elements of v aligned as an m×m matrix. Then one can use the relation (A⊗B ) v=Vec (BV AT ) to perform a matrix-vector product.
    • Denote v as an m 2 vector and V as the elements of v aligned as an m × m matrix. Then one can use the relation (A ⊗ B) v = Vec (B V A T) to perform a matrix-vector product.
  • 18
    • 77954877320 scopus 로고    scopus 로고
    • A Lanczos approach would take an additional factor for convergence.
    • A Lanczos approach would take an additional factor for convergence.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.