-
1
-
-
0032495519
-
-
10.1038/34373
-
D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, and M. A. Kastner, Nature (London) 391, 156 (1998). 10.1038/34373
-
(1998)
Nature (London)
, vol.391
, pp. 156
-
-
Goldhaber-Gordon, D.1
Shtrikman, H.2
Mahalu, D.3
Abusch-Magder, D.4
Meirav, U.5
Kastner, M.A.6
-
5
-
-
77954831339
-
-
Although one should be cautious in taking this approach, as a heavy fermion system is modeled by a Kondo lattice Hamiltonian while all the results presented here are for a single impurity.
-
Although one should be cautious in taking this approach, as a heavy fermion system is modeled by a Kondo lattice Hamiltonian while all the results presented here are for a single impurity.
-
-
-
-
7
-
-
77954828836
-
-
arXiv:cond-mat/9508030 (unpublished);
-
E. S. Sørensen and I. Affleck, arXiv:cond-mat/9508030 (unpublished)
-
-
-
Sørensen, E.S.1
Affleck, I.2
-
9
-
-
0037064999
-
-
10.1103/PhysRevLett.89.206602;
-
P. Simon and I. Affleck, Phys. Rev. Lett. 89, 206602 (2002) 10.1103/PhysRevLett.89.206602
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 206602
-
-
Simon, P.1
Affleck, I.2
-
10
-
-
0242427724
-
-
10.1103/PhysRevB.68.115304;
-
P. Simon and I. Affleck, Phys. Rev. B 68, 115304 (2003) 10.1103/PhysRevB.68.115304
-
(2003)
Phys. Rev. B
, vol.68
, pp. 115304
-
-
Simon, P.1
Affleck, I.2
-
13
-
-
41449117106
-
-
10.1103/PhysRevB.77.104401;
-
G. Bergmann, Phys. Rev. B 77, 104401 (2008) 10.1103/PhysRevB.77.104401
-
(2008)
Phys. Rev. B
, vol.77
, pp. 104401
-
-
Bergmann, G.1
-
14
-
-
77954829121
-
-
arXiv:0901.3347 (unpublished).
-
G. Bergmann, arXiv:0901.3347 (unpublished).
-
-
-
Bergmann, G.1
-
15
-
-
57249111976
-
-
10.1103/PhysRevB.78.195124
-
G. Bergmann, Phys. Rev. B 78, 195124 (2008). 10.1103/PhysRevB.78.195124
-
(2008)
Phys. Rev. B
, vol.78
, pp. 195124
-
-
Bergmann, G.1
-
17
-
-
33750629948
-
-
10.1103/PhysRevB.74.195103
-
S. Costamagna, C. J. Gazza, M. E. Torio, and J. A. Riera, Phys. Rev. B 74, 195103 (2006). 10.1103/PhysRevB.74.195103
-
(2006)
Phys. Rev. B
, vol.74
, pp. 195103
-
-
Costamagna, S.1
Gazza, C.J.2
Torio, M.E.3
Riera, J.A.4
-
18
-
-
33846443979
-
-
10.1103/PhysRevB.75.041307
-
L. Borda, Phys. Rev. B 75, 041307 (R) (2007). 10.1103/PhysRevB.75.041307
-
(2007)
Phys. Rev. B
, vol.75
, pp. 041307
-
-
Borda, L.1
-
19
-
-
77954831113
-
-
arXiv:0906.2933 (unpublished).
-
A. Holzner, I. McCulloch, U. Schollwöck, J. von Delft, and F. Heidrich-Meisner, arXiv:0906.2933 (unpublished).
-
-
-
Holzner, A.1
McCulloch, I.2
Schollwöck, U.3
Von Delft, J.4
Heidrich-Meisner, F.5
-
20
-
-
77954826770
-
-
arXiv:0708.3604 (unpublished).
-
J. Simonin, arXiv:0708.3604 (unpublished).
-
-
-
Simonin, J.1
-
21
-
-
0032562570
-
-
10.1126/science.280.5363.567
-
V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, and N. S. Wingreen, Science 280, 567 (1998). 10.1126/science.280.5363.567
-
(1998)
Science
, vol.280
, pp. 567
-
-
Madhavan, V.1
Chen, W.2
Jamneala, T.3
Crommie, M.F.4
Wingreen, N.S.5
-
22
-
-
4243739170
-
-
10.1103/PhysRevLett.82.5088;
-
V. Ferrari, G. Chiappe, E. V. Anda, and M. A. Davidovich, Phys. Rev. Lett. 82, 5088 (1999) 10.1103/PhysRevLett.82.5088
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 5088
-
-
Ferrari, V.1
Chiappe, G.2
Anda, E.V.3
Davidovich, M.A.4
-
23
-
-
0034667032
-
-
10.1103/PhysRevB.62.9907;
-
C. A. Büsser, E. V. Anda, A. L. Lima, M. A. Davidovich, and G. Chiappe, Phys. Rev. B 62, 9907 (2000) 10.1103/PhysRevB.62.9907
-
(2000)
Phys. Rev. B
, vol.62
, pp. 9907
-
-
Büsser, C.A.1
Anda, E.V.2
Lima, A.L.3
Davidovich, M.A.4
Chiappe, G.5
-
24
-
-
33144484524
-
-
10.1103/PhysRevLett.96.066802
-
G. B. Martins, C. A. Büsser, K. A. Al-Hassanieh, E. V. Anda, A. Moreo, and E. Dagotto, Phys. Rev. Lett. 96, 066802 (2006). 10.1103/PhysRevLett. 96.066802
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 066802
-
-
Martins, G.B.1
Büsser, C.A.2
Al-Hassanieh, K.A.3
Anda, E.V.4
Moreo, A.5
Dagotto, E.6
-
25
-
-
14944355608
-
-
10.1103/PhysRevB.70.245303;
-
C. A. Büsser, G. B. Martins, K. A. Al-Hassanieh, A. Moreo, and E. Dagotto, Phys. Rev. B 70, 245303 (2004) 10.1103/PhysRevB.70.245303
-
(2004)
Phys. Rev. B
, vol.70
, pp. 245303
-
-
Büsser, C.A.1
Martins, G.B.2
Al-Hassanieh, K.A.3
Moreo, A.4
Dagotto, E.5
-
26
-
-
50049090092
-
-
10.1103/PhysRevB.78.085308
-
E. V. Anda, G. Chiappe, C. A. Büsser, M. A. Davidovich, G. B. Martins, F. Heidrich-Meisner, and E. Dagotto, Phys. Rev. B 78, 085308 (2008). 10.1103/PhysRevB.78.085308
-
(2008)
Phys. Rev. B
, vol.78
, pp. 085308
-
-
Anda, E.V.1
Chiappe, G.2
Büsser, C.A.3
Davidovich, M.A.4
Martins, G.B.5
Heidrich-Meisner, F.6
Dagotto, E.7
-
28
-
-
0023451795
-
-
10.1080/00018738700101082
-
D. M. Newns and N. Reed, Adv. Phys. 36, 799 (1987). 10.1080/ 00018738700101082
-
(1987)
Adv. Phys.
, vol.36
, pp. 799
-
-
Newns, D.M.1
Reed, N.2
-
29
-
-
35949034896
-
-
10.1103/RevModPhys.47.773
-
K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975). 10.1103/RevModPhys.47.773
-
(1975)
Rev. Mod. Phys.
, vol.47
, pp. 773
-
-
Wilson, K.G.1
-
30
-
-
12044251032
-
-
10.1103/RevModPhys.66.763
-
E. Dagotto, Rev. Mod. Phys. 66, 763 (1994). 10.1103/RevModPhys.66.763
-
(1994)
Rev. Mod. Phys.
, vol.66
, pp. 763
-
-
Dagotto, E.1
-
33
-
-
0542390630
-
-
10.1103/PhysRevB.52.14436
-
K. Chen and C. Jayaprakash, Phys. Rev. B 52, 14436 (1995). 10.1103/PhysRevB.52.14436
-
(1995)
Phys. Rev. B
, vol.52
, pp. 14436
-
-
Chen, K.1
Jayaprakash, C.2
-
35
-
-
0000303397
-
-
[10.1070/PU1960v003n03ABEH003275
-
D. N. Zubarev, [Sov. Phys. Usp. 3, 320 (1960)]. 10.1070/ PU1960v003n03ABEH003275
-
(1960)
Sov. Phys. Usp.
, vol.3
, pp. 320
-
-
Zubarev, D.N.1
-
36
-
-
0000211878
-
-
10.1098/rspa.1963.0204
-
′ = 0, and we found agreement between the two results for the extension of the Kondo cloud R K. 10.1098/rspa.1963.0204
-
(1963)
Proc. R. Soc. London, Ser. A
, vol.276
, pp. 238
-
-
Hubbard, J.1
-
37
-
-
77954830839
-
-
It is important to comment that, the same analytic calculation performed in Ref., which led to the functional forms used to fit the weak- and strong-coupling numerical data in their Fig. , can also be done here (although it is certainly a more involved derivation). However, the authors decided not to do so, in order to shorten the Appendix. This will be done in a forthcoming work.
-
It is important to comment that, the same analytic calculation performed in Ref., which led to the functional forms used to fit the weak- and strong-coupling numerical data in their Fig., can also be done here (although it is certainly a more involved derivation). However, the authors decided not to do so, in order to shorten the Appendix. This will be done in a forthcoming work.
-
-
-
-
38
-
-
77954829704
-
-
Note that A0 was not calculated as | F (0) | but through the fittings discussed in Figs. . Therefore, its value and its dependency with Δ, as seen in Fig. , do not represent the value or the variation in the area of the Kondo peak.
-
Note that A 0 was not calculated as | F (0) | but through the fittings discussed in Figs.. Therefore, its value and its dependency with Δ, as seen in Fig., do not represent the value or the variation in the area of the Kondo peak.
-
-
-
-
39
-
-
77954829488
-
-
A second extrapolation method can also be used (although not as accurate as the one described in Sec. ): one can extrapolate the value of | F (N) | to the thermodynamical limit (1/L→0 ) for each value of N, and then obtain RK by fitting the extrapolated | F (N) | to Eq. . Although there is good qualitative agreement on the values obtained for RK between the two extrapolation methods, we favor the first one, as it involves much less computational effort and is therefore more accurate.
-
A second extrapolation method can also be used (although not as accurate as the one described in Sec.): one can extrapolate the value of | F (N) | to the thermodynamical limit (1 / L → 0) for each value of N, and then obtain R K by fitting the extrapolated | F (N) | to Eq.. Although there is good qualitative agreement on the values obtained for R K between the two extrapolation methods, we favor the first one, as it involves much less computational effort and is therefore more accurate.
-
-
-
-
40
-
-
77954833046
-
-
The limit in which | F (N) | →0 determines the order of magnitude of the Kondo cloud. However, the actual values and functional variation in both A0 and RK in Eq. clearly indicate that RK has a leading contribution in determining the size of the Kondo cloud, given the small variation in A0 in the region of parameter space associated to the Kondo effect (compare the scales of the vertical axis in Figs. ).
-
The limit in which | F (N) | → 0 determines the order of magnitude of the Kondo cloud. However, the actual values and functional variation in both A 0 and R K in Eq. clearly indicate that R K has a leading contribution in determining the size of the Kondo cloud, given the small variation in A 0 in the region of parameter space associated to the Kondo effect (compare the scales of the vertical axis in Figs.).
-
-
-
-
41
-
-
77954823476
-
-
Note that, in ECA, Δ was calculated as the thermodynamical limit 1/L→0 of the width of the Kondo resonance at the impurity's LDOS.
-
Note that, in ECA, Δ was calculated as the thermodynamical limit 1 / L → 0 of the width of the Kondo resonance at the impurity's LDOS.
-
-
-
-
42
-
-
77954829420
-
-
(private communication).
-
M. Ternes (private communication).
-
-
-
Ternes, M.1
-
43
-
-
33645021907
-
-
10.1103/PhysRevLett.29.1465
-
F. Mezei and G. Grüner, Phys. Rev. Lett. 29, 1465 (1972). 10.1103/PhysRevLett.29.1465
-
(1972)
Phys. Rev. Lett.
, vol.29
, pp. 1465
-
-
Mezei, F.1
Grüner, G.2
-
44
-
-
77954824055
-
-
Note that, in the dashed (blue) curve, the site to site oscillations [similar to the ones displayed in the inset of Fig. ] were removed, to improve clarity and emphasize the oscillating behavior of | F (N) |.
-
Note that, in the dashed (blue) curve, the site to site oscillations [similar to the ones displayed in the inset of Fig.] were removed, to improve clarity and emphasize the oscillating behavior of | F (N) |.
-
-
-
|