메뉴 건너뛰기




Volumn 81, Issue 6, 2010, Pages

Schwinger-boson approach to the kagome antiferromagnet with Dzyaloshinskii-Moriya interactions: Phase diagram and dynamical structure factors

Author keywords

[No Author keywords available]

Indexed keywords


EID: 77954822663     PISSN: 10980121     EISSN: 1550235X     Source Type: Journal    
DOI: 10.1103/PhysRevB.81.064428     Document Type: Article
Times cited : (105)

References (54)
  • 2
    • 34547566936 scopus 로고
    • 10.1103/PhysRev.120.91
    • T. Moriya, Phys. Rev. 120, 91 (1960). 10.1103/PhysRev.120.91
    • (1960) Phys. Rev. , vol.120 , pp. 91
    • Moriya, T.1
  • 3
    • 4243642327 scopus 로고
    • 10.1103/PhysRevLett.66.1773
    • N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991). 10.1103/PhysRevLett.66.1773
    • (1991) Phys. Rev. Lett. , vol.66 , pp. 1773
    • Read, N.1    Sachdev, S.2
  • 4
    • 0002703699 scopus 로고
    • 10.1103/PhysRevB.44.2664
    • X. G. Wen, Phys. Rev. B 44, 2664 (1991). 10.1103/PhysRevB.44.2664
    • (1991) Phys. Rev. B , vol.44 , pp. 2664
    • Wen, X.G.1
  • 7
    • 78649245271 scopus 로고    scopus 로고
    • 10.1209/0295-5075/88/27009
    • P. Sindzingre and C. Lhuillier, EPL 88, 27009 (2009). 10.1209/0295-5075/88/27009
    • (2009) EPL , vol.88 , pp. 27009
    • Sindzingre, P.1    Lhuillier, C.2
  • 8
    • 0035124494 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.63.014413
    • M. B. Hastings, Phys. Rev. B 63, 014413 (2000). 10.1103/PhysRevB.63. 014413
    • (2000) Phys. Rev. B , vol.63 , pp. 014413
    • Hastings, M.B.1
  • 9
    • 33947226050 scopus 로고    scopus 로고
    • Projected-wave-function study of the spin-1/2 heisenberg model on the kagomé lattice
    • DOI 10.1103/PhysRevLett.98.117205
    • Y. Ran, M. Hermele, P. A. Lee, and X.-G. Wen, Phys. Rev. Lett. 98, 117205 (2007). 10.1103/PhysRevLett.98.117205 (Pubitemid 46434373)
    • (2007) Physical Review Letters , vol.98 , Issue.11 , pp. 117205
    • Ran, Y.1    Hermele, M.2    Lee, P.A.3    Wen, X.-G.4
  • 14
    • 42449100886 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.77.144415
    • R. R. P. Singh and D. A. Huse, Phys. Rev. B 77, 144415 (2008). 10.1103/PhysRevB.77.144415
    • (2008) Phys. Rev. B , vol.77 , pp. 144415
    • Singh, R.R.P.1    Huse, D.A.2
  • 21
    • 40849150982 scopus 로고    scopus 로고
    • O17 NMR study of the intrinsic magnetic susceptibility and spin dynamics of the quantum kagome antiferromagnet ZnCu3(OH)6Cl2
    • DOI 10.1103/PhysRevLett.100.087202
    • A. Olariu, P. Mendels, F. Bert, F. Duc, J. C. Trombe, M. A. de Vries, and A. Harrison, Phys. Rev. Lett. 100, 087202 (2008). 10.1103/PhysRevLett.100. 087202 (Pubitemid 351393623)
    • (2008) Physical Review Letters , vol.100 , Issue.8 , pp. 087202
    • Olariu, A.1    Mendels, P.2    Bert, F.3    Duc, F.4    Trombe, J.C.5    De Vries, M.A.6    Harrison, A.7
  • 22
    • 34547275191 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.98.207204;
    • M. Rigol and R. R. P. Singh, Phys. Rev. Lett. 98, 207204 (2007) 10.1103/PhysRevLett.98.207204
    • (2007) Phys. Rev. Lett. , vol.98 , pp. 207204
    • Rigol, M.1    Singh, R.R.P.2
  • 23
    • 35848954979 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.76.184403
    • M. Rigol and R. R. P. Singh, Phys. Rev. B 76, 184403 (2007). 10.1103/PhysRevB.76.184403
    • (2007) Phys. Rev. B , vol.76 , pp. 184403
    • Rigol, M.1    Singh, R.R.P.2
  • 28
    • 0000090191 scopus 로고
    • 10.1103/PhysRevB.47.5459
    • P. W. Leung and V. Elser, Phys. Rev. B 47, 5459 (1993). 10.1103/PhysRevB.47.5459
    • (1993) Phys. Rev. B , vol.47 , pp. 5459
    • Leung, P.W.1    Elser, V.2
  • 30
    • 0001520701 scopus 로고
    • 10.1103/PhysRevB.45.12377
    • S. Sachdev, Phys. Rev. B 45, 12377 (1992). 10.1103/PhysRevB.45.12377
    • (1992) Phys. Rev. B , vol.45 , pp. 12377
    • Sachdev, S.1
  • 34
    • 30844435515 scopus 로고    scopus 로고
    • Flux expulsion and greedy bosons: Frustrated magnets at large N
    • DOI 10.1209/epl/i2005-10389-2
    • O. Tchernyshyov, R. Moessner, and S. L. Sondhi, Europhys. Lett. 73, 278 (2006). 10.1209/epl/i2005-10389-2 (Pubitemid 43106789)
    • (2006) Europhysics Letters , vol.73 , Issue.2 , pp. 278-284
    • Tchernyshyov, O.1    Moessner, R.2    Sondhi, S.L.3
  • 36
    • 0000742967 scopus 로고
    • 10.1016/0378-4371(78)90160-7
    • J. H. P. Colpa, Physica A 93, 327 (1978). 10.1016/0378-4371(78)90160-7
    • (1978) Physica A , vol.93 , pp. 327
    • Colpa, J.H.P.1
  • 37
    • 34548381167 scopus 로고    scopus 로고
    • This fact was already mentioned implicitly by, 10.1103/PhysRevB.76.064430
    • This fact was already mentioned implicitly by T. Yavors'kii, W. Apel, and H.-U. Everts, Phys. Rev. B 76, 064430 (2007). 10.1103/PhysRevB.76.064430
    • (2007) Phys. Rev. B , vol.76 , pp. 064430
    • Yavors'Kii, T.1    Apel, W.2    Everts, H.-U.3
  • 39
    • 77954821867 scopus 로고    scopus 로고
    • arXiv:0901.1065 (unpublished).
    • A. Laeuchli and C. Lhuillier, arXiv:0901.1065 (unpublished).
    • Laeuchli, A.1    Lhuillier, C.2
  • 40
    • 0003510649 scopus 로고
    • A simple way to derive the 3/2 factor (see, however, Springer-Verlag, Berlin
    • A simple way to derive the 3/2 factor (see, however, A. Auerbach, Interacting Electrons and Quantum Magnetism (Springer-Verlag, Berlin, 1994 for the discussion of the 1 / N corrections) is to use the Wick theorem: n i 2 - n i 2 =n a i (n a i + 1) + n b i ( n b i + 1) + | a i 2 | 2 + | b i 2 | 2 + 2 | a i b i | 2 + 2 | a i † b i | 2. At D = 0, the Hamiltonian is SU(2) invariant and we obtain n i 2 - n i 2 = 2 S (S + 1). For D ≠ 0, a i b i 0.
    • (1994) Interacting Electrons and Quan
    • Auerbach, A.1
  • 41
    • 77954826355 scopus 로고    scopus 로고
    • At finite N and for sufficiently small boson density, the problem is strictly equivalent to gapped spinons (the Schwinger bosons) interacting with a fluctuating bond field. It has been understood that the low-energy physics of such a system will be that of a lattice gauge theory coupled to charged matter fields. But the nature (group) of the gauge field crucially depends on the lattice geometry and in the present case where the lattice is not bipartite, it should generically be of Z2 type and has two types of phases (Refs.). If the effective Z2 gauge theory is in a deconfined phase (which should be the case for large enough N), the ground state is qualitatively close to the mean-field one, with gapped and unconfined spinons. If the phase is instead confined, the gauge fluctuations are strong and cannot be neglected, the mean-field picture is not valid any more.
    • At finite N and for sufficiently small boson density, the problem is strictly equivalent to gapped spinons (the Schwinger bosons) interacting with a fluctuating bond field. It has been understood that the low-energy physics of such a system will be that of a lattice gauge theory coupled to charged matter fields. But the nature (group) of the gauge field crucially depends on the lattice geometry and in the present case where the lattice is not bipartite, it should generically be of Z 2 type and has two types of phases (Refs.). If the effective Z 2 gauge theory is in a deconfined phase (which should be the case for large enough N), the ground state is qualitatively close to the mean-field one, with gapped and unconfined spinons. If the phase is instead confined, the gauge fluctuations are strong and cannot be neglected, the mean-field picture is not valid any more.
  • 42
    • 77954829127 scopus 로고    scopus 로고
    • arXiv0809 (unpublished). Lectures given at the Les Houches summer school on Exact Methods in Low-Dimensional Statistical Physics and Quantum Computing
    • G. Misguich, arXiv0809 (unpublished). Lectures given at the Les Houches summer school on Exact Methods in Low-Dimensional Statistical Physics and Quantum Computing, 2008.
    • (2008)
    • Misguich, G.1
  • 43
    • 77954826276 scopus 로고    scopus 로고
    • For the sake of simplicity we develop only the formulas corresponding to a unique soft mode. This is the case of the Néel order in presence of a Dzyaloshinskii-Moriya interaction: due to the U(1) symmetry of the original Hamiltonian, the Goldstone mode is unique. The general case is straightforward but more cumbersome in writing.
    • For the sake of simplicity we develop only the formulas corresponding to a unique soft mode. This is the case of the Néel order in presence of a Dzyaloshinskii-Moriya interaction: due to the U(1) symmetry of the original Hamiltonian, the Goldstone mode is unique. The general case is straightforward but more cumbersome in writing.
  • 44
    • 77954829429 scopus 로고    scopus 로고
    • m AF 2 is delicate to normalize because of the fluctuations of the spin length on each site. Fluctuations also increase with the strength of the Dzyaloshinskii-Moriya coupling, making the normalization partly arbitrary.
    • m A F 2 is delicate to normalize because of the fluctuations of the spin length on each site. Fluctuations also increase with the strength of the Dzyaloshinskii-Moriya coupling, making the normalization partly arbitrary.
  • 45
    • 0001619619 scopus 로고
    • 10.1103/PhysRevB.39.2608;
    • H. Neuberger and T. Ziman, Phys. Rev. B 39, 2608 (1989) 10.1103/PhysRevB.39.2608
    • (1989) Phys. Rev. B , vol.39 , pp. 2608
    • Neuberger, H.1    Ziman, T.2
  • 46
    • 0000276066 scopus 로고
    • 10.1103/PhysRevB.39.11783;
    • D. S. Fisher, Phys. Rev. B 39, 11783 (1989) 10.1103/PhysRevB.39.11783
    • (1989) Phys. Rev. B , vol.39 , pp. 11783
    • Fisher, D.S.1
  • 48
    • 26144464044 scopus 로고
    • 10.1103/PhysRevB.46.193
    • J. N. Reimers, Phys. Rev. B 46, 193 (1992). 10.1103/PhysRevB.46.193
    • (1992) Phys. Rev. B , vol.46 , pp. 193
    • Reimers, J.N.1
  • 52
    • 77954821126 scopus 로고    scopus 로고
    • If q0 0, the spinon dispersion is folded in the magnetic Brillouin zone.
    • If q 0 0, the spinon dispersion is folded in the magnetic Brillouin zone.
  • 53
    • 0035117125 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.63.064430
    • A. S. Wills, Phys. Rev. B 63, 064430 (2001). 10.1103/PhysRevB.63.064430
    • (2001) Phys. Rev. B , vol.63 , pp. 064430
    • Wills, A.S.1
  • 54
    • 77954829715 scopus 로고    scopus 로고
    • For S>1/2, we note that single-ion anisotropies are also present and may affect the form of magnetic order.
    • For S > 1 / 2, we note that single-ion anisotropies are also present and may affect the form of magnetic order.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.