-
1
-
-
0000328287
-
-
10.1147/rd.53.0183
-
R. Landauer, IBM J. Res. Dev. 5, 183 (1961). 10.1147/rd.53.0183
-
(1961)
IBM J. Res. Dev.
, vol.5
, pp. 183
-
-
Landauer, R.1
-
3
-
-
0003598957
-
-
Wiley, Chichester, U.K.
-
R. S. Berry, V. A. Kazakov, S. Sieniutycz, Z. Szwast, and A. M. Tsirlin, Thermodynamic Optimization of Finite-Time Processes (Wiley, Chichester, U.K., 2000).
-
(2000)
Thermodynamic Optimization of Finite-Time Processes
-
-
Berry, R.S.1
Kazakov, V.A.2
Sieniutycz, S.3
Szwast, Z.4
Tsirlin, A.M.5
-
5
-
-
27744477497
-
-
10.1103/PhysRevLett.95.190602
-
C. Van den Broeck, Phys. Rev. Lett. 95, 190602 (2005). 10.1103/PhysRevLett.95.190602
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 190602
-
-
Van Den Broeck, C.1
-
7
-
-
79051469430
-
-
10.1209/0295-5075/81/20003
-
T. Schmiedl and U. Seifert, EPL 81, 20003 (2008). 10.1209/0295-5075/81/ 20003
-
(2008)
EPL
, vol.81
, pp. 20003
-
-
Schmiedl, T.1
Seifert, U.2
-
8
-
-
36849116450
-
-
10.1063/1.1699951
-
L. Brillouin, J. Appl. Phys. 22, 334 (1951). 10.1063/1.1699951
-
(1951)
J. Appl. Phys.
, vol.22
, pp. 334
-
-
Brillouin, L.1
-
10
-
-
34250935158
-
-
10.1007/BF01341281
-
L. Szilard, Z. Phys. 53, 840 (1929). 10.1007/BF01341281
-
(1929)
Z. Phys.
, vol.53
, pp. 840
-
-
Szilard, L.1
-
11
-
-
77954826988
-
-
note
-
Erasure of memory can be viewed as information transmission in channels with an input (e.g., writing zeros to the memory) and an output (reading zeros). For simplicity, assume that the channel suffers from thermal noise in the form of additive white Gaussian noise of temperature T. Hence, the Shannon-Hartley theorem C = B ln [1 + S / (B T)] gives the relation between the rate of memory erasure C and the power of our eraser S. The minimal energy required to erase a unit of information is obtained by minimizing S / C, yielding T, in agreement with Landauer's erasure principle [ln (2) factor is missing since we adopt the units of nats instead of bits]. This value is reached when S → 0, suggesting that minimum energy dissipation is achieved only when the erasure process is infinitely slow. In the engine proposed here the detector sends information to the memory of the processor, erasing old information left in the previous working cycle, realizing Landauer's erasure principle.
-
-
-
-
12
-
-
0030527878
-
-
10.1119/1.18197
-
T. Feldmann, E. Geva, R. Kosloff, and P. Salamon, Am. J. Phys. 64, 485 (1996). 10.1119/1.18197
-
(1996)
Am. J. Phys.
, vol.64
, pp. 485
-
-
Feldmann, T.1
Geva, E.2
Kosloff, R.3
Salamon, P.4
-
13
-
-
77954829348
-
-
note
-
Standardly, the units of the channel capacity C are nats/s, and it is given in terms of the signal power S and the noise power N. Here I p is a dimensionless channel capacity, given in terms of the signal and noise averaged energy, S and N 0, respectively. For simplicity, we use 2 pulses as the basic unit for counting information transfer in a channel. This choice does not affect our results.
-
-
-
-
16
-
-
0036013604
-
-
10.1103/RevModPhys.74.197
-
V. Vedral, Rev. Mod. Phys. 74, 197 (2002). 10.1103/RevModPhys.74.197
-
(2002)
Rev. Mod. Phys.
, vol.74
, pp. 197
-
-
Vedral, V.1
-
17
-
-
4243682452
-
-
10.1103/PhysRevA.62.052104
-
M. P. Blencowe and V. Vitelli, Phys. Rev. A 62, 052104 (2000). 10.1103/PhysRevA.62.052104
-
(2000)
Phys. Rev. A
, vol.62
, pp. 052104
-
-
Blencowe, M.P.1
Vitelli, V.2
-
18
-
-
77954827404
-
-
note
-
We refer to this engine as "strongly coupled" since the work attained δ E - Q I is proportional to the energy pumped, δ E = I T H [Eq.].
-
-
-
|