메뉴 건너뛰기




Volumn 160, Issue 2, 2010, Pages 522-529

An integrated dynamic model for simulating a full-scale municipal wastewater treatment plant under fluctuating conditions

Author keywords

Activated sludge model (ASM); Genetic algorithm (GA); Integrated model; Mechanistic model; Neural network (NN); Wastewater treatment plant (WWTP)

Indexed keywords

ACTIVATED SLUDGE MODEL; ACTIVATED SLUDGE MODEL (ASM); INTEGRATED MODELS; MECHANISTIC MODELS; WASTEWATER TREATMENT PLANTS;

EID: 77954818024     PISSN: 13858947     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cej.2010.03.063     Document Type: Article
Times cited : (33)

References (30)
  • 1
    • 77954817376 scopus 로고
    • Metcalf & Eddy, Inc., Wastewater Engineering: Treatment, Disposal and Reuse, 2nd ed.
    • Metcalf & Eddy, Inc., Wastewater Engineering: Treatment, Disposal and Reuse, 2nd ed., 1978.
    • (1978)
  • 2
    • 0842269743 scopus 로고    scopus 로고
    • Optimum municipal wastewater treatment plant design with consideration of uncertainty
    • Zeng G.M., Lin Y.P., Qin X.S., Huang G.H., Li J.B., Jiang R. Optimum municipal wastewater treatment plant design with consideration of uncertainty. J. Environ. Sci. 2004, 16:126-131.
    • (2004) J. Environ. Sci. , vol.16 , pp. 126-131
    • Zeng, G.M.1    Lin, Y.P.2    Qin, X.S.3    Huang, G.H.4    Li, J.B.5    Jiang, R.6
  • 3
    • 77954814834 scopus 로고    scopus 로고
    • Activated sludge models ASM1, ASM2, ASM2d, and ASM3. IWA Scientific and technical report no. 9, IWA Publishing, London, UK,.
    • M. Henze, W. Gujer, T. Mino, M.C.M. van Loosdrecht, Activated sludge models ASM1, ASM2, ASM2d, and ASM3. IWA Scientific and technical report no. 9, IWA Publishing, London, UK, 2009.
    • (2009)
    • Henze, M.1    Gujer, W.2    Mino, T.3    van Loosdrecht, M.C.M.4
  • 4
    • 0141831911 scopus 로고    scopus 로고
    • Nonlinear modeling and adaptive monitoring with fuzzy and multivariate statistical methods in biological wastewater treatment plants
    • Yoo C.K., Vanrolleghem P.A., Lee I.B. Nonlinear modeling and adaptive monitoring with fuzzy and multivariate statistical methods in biological wastewater treatment plants. J. Biotechnol. 2003, 105:135-163.
    • (2003) J. Biotechnol. , vol.105 , pp. 135-163
    • Yoo, C.K.1    Vanrolleghem, P.A.2    Lee, I.B.3
  • 5
    • 68049120465 scopus 로고    scopus 로고
    • Modeling and simulation of the sequencing batch reactor at a full-scale municipal wastewater treatment plant
    • Ni B.J., Xie W.M., Liu S.G., Yu H.Q., Wang Y.Z., Wang G., Dai X.L. Modeling and simulation of the sequencing batch reactor at a full-scale municipal wastewater treatment plant. AIChE J. 2009, 55:2186-2196.
    • (2009) AIChE J. , vol.55 , pp. 2186-2196
    • Ni, B.J.1    Xie, W.M.2    Liu, S.G.3    Yu, H.Q.4    Wang, Y.Z.5    Wang, G.6    Dai, X.L.7
  • 7
    • 36649028924 scopus 로고    scopus 로고
    • Full-scale modeling of a food industry wastewater treatment plant in view of process upgrade
    • Vandekerckhove A., Moerman W., Hulle S.W.H. Full-scale modeling of a food industry wastewater treatment plant in view of process upgrade. Chem. Eng. J. 2008, 135:185-194.
    • (2008) Chem. Eng. J. , vol.135 , pp. 185-194
    • Vandekerckhove, A.1    Moerman, W.2    Hulle, S.W.H.3
  • 8
    • 0030957114 scopus 로고    scopus 로고
    • Dynamic model for UASB reactor including reactor hydraulics, reaction, and diffusion
    • Wu M.M., Hickey R.F. Dynamic model for UASB reactor including reactor hydraulics, reaction, and diffusion. J. Environ. Eng. ASCE 1997, 123:244-252.
    • (1997) J. Environ. Eng. ASCE , vol.123 , pp. 244-252
    • Wu, M.M.1    Hickey, R.F.2
  • 9
    • 0037142398 scopus 로고    scopus 로고
    • Hybrid neural network modeling of a full-scale industrial wastewater treatment process
    • Lee D.S., Jeon C.O., Park J.M., Chang K.S. Hybrid neural network modeling of a full-scale industrial wastewater treatment process. Biotechnol. Bioeng. 2002, 78:670-682.
    • (2002) Biotechnol. Bioeng. , vol.78 , pp. 670-682
    • Lee, D.S.1    Jeon, C.O.2    Park, J.M.3    Chang, K.S.4
  • 10
    • 65549083334 scopus 로고    scopus 로고
    • Estimating the kinetic parameters of activated sludge storage using weighted nonlinear least-squares and accelerating genetic algorithm
    • Fang F., Ni B.J., Yu H.Q. Estimating the kinetic parameters of activated sludge storage using weighted nonlinear least-squares and accelerating genetic algorithm. Water Res. 2009, 43:2595-2604.
    • (2009) Water Res. , vol.43 , pp. 2595-2604
    • Fang, F.1    Ni, B.J.2    Yu, H.Q.3
  • 11
    • 61449128394 scopus 로고    scopus 로고
    • Modelling the solid-liquid adsorption processes using artificial neural networks trained by pseudo second order kinetics
    • Kumar K.V., Porkodi K. Modelling the solid-liquid adsorption processes using artificial neural networks trained by pseudo second order kinetics. Chem. Eng. J. 2009, 148:20-25.
    • (2009) Chem. Eng. J. , vol.148 , pp. 20-25
    • Kumar, K.V.1    Porkodi, K.2
  • 12
    • 37349041384 scopus 로고    scopus 로고
    • Field determination of phenolic compounds in olive oil mill wastewater by artificial neural network
    • Torrecilla J.S., Mena M.L., Yanez-Sedeno P., Garcia J. Field determination of phenolic compounds in olive oil mill wastewater by artificial neural network. Biochem. Eng. J. 2008, 38:171-179.
    • (2008) Biochem. Eng. J. , vol.38 , pp. 171-179
    • Torrecilla, J.S.1    Mena, M.L.2    Yanez-Sedeno, P.3    Garcia, J.4
  • 13
    • 34250206970 scopus 로고    scopus 로고
    • Metabolic footprinting: A new approach to identify physiological changes in complex microbial communities upon exposure to toxic chemicals
    • Henriques I.D.S., Aga D.S., Mendes P., O'Connor S.K., Love N.G. Metabolic footprinting: A new approach to identify physiological changes in complex microbial communities upon exposure to toxic chemicals. Environ. Sci. Technol. 2007, 41:3945-3951.
    • (2007) Environ. Sci. Technol. , vol.41 , pp. 3945-3951
    • Henriques, I.D.S.1    Aga, D.S.2    Mendes, P.3    O'Connor, S.K.4    Love, N.G.5
  • 14
    • 0037399368 scopus 로고    scopus 로고
    • Analysis of a municipal wastewater treatment plant using a neural network-based pattern analysis
    • Hong Y.S.T., Rosen M.R., Bhamidimarri R. Analysis of a municipal wastewater treatment plant using a neural network-based pattern analysis. Water Res. 2003, 37:1608-1618.
    • (2003) Water Res. , vol.37 , pp. 1608-1618
    • Hong, Y.S.T.1    Rosen, M.R.2    Bhamidimarri, R.3
  • 15
    • 41949094260 scopus 로고    scopus 로고
    • Optimization of biological nutrient removal in a SBR using simulation-based iterative dynamic programming
    • Kim Y.H., Yoo C.K., L I.B. Optimization of biological nutrient removal in a SBR using simulation-based iterative dynamic programming. Chem. Eng. J. 2008, 139:11-19.
    • (2008) Chem. Eng. J. , vol.139 , pp. 11-19
    • Kim, Y.H.1    Yoo, C.K.2    L, I.B.3
  • 16
    • 33947712235 scopus 로고    scopus 로고
    • Artificial neural networks for rapid WWTP performance evaluation: methodology and case study
    • Raduly B., Gernaey K.V., Capodaglio A.G., Mikkelsen P.S., Henze M. Artificial neural networks for rapid WWTP performance evaluation: methodology and case study. Environ. Model. Softw. 2007, 22:1208-1216.
    • (2007) Environ. Model. Softw. , vol.22 , pp. 1208-1216
    • Raduly, B.1    Gernaey, K.V.2    Capodaglio, A.G.3    Mikkelsen, P.S.4    Henze, M.5
  • 17
    • 59349083164 scopus 로고    scopus 로고
    • Prediction of optimized pretreatment process parameters for biodiesel production using ANN and GA
    • Rajendra M., Jen P.C., Raheman H. Prediction of optimized pretreatment process parameters for biodiesel production using ANN and GA. Fuel 2009, 88:868-875.
    • (2009) Fuel , vol.88 , pp. 868-875
    • Rajendra, M.1    Jen, P.C.2    Raheman, H.3
  • 18
    • 57949084205 scopus 로고    scopus 로고
    • Optimization of fermentative hydrogen production process using genetic algorithm based on neural network and response surface methodology
    • Wang J.L., Wan W. Optimization of fermentative hydrogen production process using genetic algorithm based on neural network and response surface methodology. Int. J. Hydrogen Energy 2009, 34:255-261.
    • (2009) Int. J. Hydrogen Energy , vol.34 , pp. 255-261
    • Wang, J.L.1    Wan, W.2
  • 19
    • 50649100676 scopus 로고    scopus 로고
    • An artificial neural network model and design equations for BOD and COD removal prediction in horizontal subsurface flow constructed wetlands
    • Akratos C.S., Papaspyros J.N.E., Tsihrintzis V.A. An artificial neural network model and design equations for BOD and COD removal prediction in horizontal subsurface flow constructed wetlands. Chem. Eng. J. 2008, 143:96-110.
    • (2008) Chem. Eng. J. , vol.143 , pp. 96-110
    • Akratos, C.S.1    Papaspyros, J.N.E.2    Tsihrintzis, V.A.3
  • 20
    • 0031999703 scopus 로고    scopus 로고
    • Toward global optimization of neural networks: a comparison of the genetic algorithm and back propagation
    • Sexton R.S., Dorsey R.E., Johnson J.D. Toward global optimization of neural networks: a comparison of the genetic algorithm and back propagation. Decis. Support Syst. 1998, 22:171-185.
    • (1998) Decis. Support Syst. , vol.22 , pp. 171-185
    • Sexton, R.S.1    Dorsey, R.E.2    Johnson, J.D.3
  • 23
    • 76449093402 scopus 로고    scopus 로고
    • Hybrid training approach for artificial neural networks using genetic algorithms for rate of reaction estimation: application to industrial methanol oxidation to formaldehyde on silver catalyst
    • Filho A.C.P., Filho R.M. Hybrid training approach for artificial neural networks using genetic algorithms for rate of reaction estimation: application to industrial methanol oxidation to formaldehyde on silver catalyst. Chem. Eng. J. 2010, 157:501-508.
    • (2010) Chem. Eng. J. , vol.157 , pp. 501-508
    • Filho, A.C.P.1    Filho, R.M.2
  • 24
    • 0034840378 scopus 로고    scopus 로고
    • The EAWAG Bio-P module for activated sludge model no. 3
    • Rieger L., Koch G., Kuhni M., Gujer W., Siegrist H. The EAWAG Bio-P module for activated sludge model no. 3. Water Res. 2001, 35:3887-3903.
    • (2001) Water Res. , vol.35 , pp. 3887-3903
    • Rieger, L.1    Koch, G.2    Kuhni, M.3    Gujer, W.4    Siegrist, H.5
  • 25
    • 33846897687 scopus 로고    scopus 로고
    • Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance
    • Mjalli F.S., Al-Asheh S., Alfadala H.E. Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance. J. Environ. Manage. 2007, 83:329-338.
    • (2007) J. Environ. Manage. , vol.83 , pp. 329-338
    • Mjalli, F.S.1    Al-Asheh, S.2    Alfadala, H.E.3
  • 28
    • 18244406017 scopus 로고    scopus 로고
    • Long-term simulation of the activated sludge process at the Hanover-Gummerwald pilot WWTP
    • Makinia J., Rosenwinkel K.H., Spering V. Long-term simulation of the activated sludge process at the Hanover-Gummerwald pilot WWTP. Water Res. 2005, 39:1489-1502.
    • (2005) Water Res. , vol.39 , pp. 1489-1502
    • Makinia, J.1    Rosenwinkel, K.H.2    Spering, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.