-
1
-
-
0242268527
-
-
10.1038/nature01981
-
N. E. Hussey, M. Abdel-Jawad, A. Carrington, A. P. Mackenzie, and L. Balicas, Nature (London) 425, 814 (2003). 10.1038/nature01981
-
(2003)
Nature (London)
, vol.425
, pp. 814
-
-
Hussey, N.E.1
Abdel-Jawad, M.2
Carrington, A.3
MacKenzie, A.P.4
Balicas, L.5
-
2
-
-
33845193170
-
-
10.1038/nphys449
-
M. Abdel-Jawad, M. P. Kennett, L. Balicas, A. Carrington, A. P. Mackenzie, R. H. McKenzie, and N. E. Hussey, Nat. Phys. 2, 821 (2006). 10.1038/nphys449
-
(2006)
Nat. Phys.
, vol.2
, pp. 821
-
-
Abdel-Jawad, M.1
Kennett, M.P.2
Balicas, L.3
Carrington, A.4
MacKenzie, A.P.5
McKenzie, R.H.6
Hussey, N.E.7
-
3
-
-
34548591922
-
-
10.1103/PhysRevLett.99.107002
-
M. Abdel-Jawad, J. G. Analytis, L. Balicas, A. Carrington, J. P. H. Charmant, M. M. J. French, and N. E. Hussey, Phys. Rev. Lett. 99, 107002 (2007). 10.1103/PhysRevLett.99.107002
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 107002
-
-
Abdel-Jawad, M.1
Analytis, J.G.2
Balicas, L.3
Carrington, A.4
Charmant, J.P.H.5
French, M.M.J.6
Hussey, N.E.7
-
4
-
-
34848818301
-
-
10.1103/PhysRevB.76.104523
-
J. G. Analytis, M. Abdel-Jawad, L. Balicas, M. M. J. French, and N. E. Hussey, Phys. Rev. B 76, 104523 (2007). 10.1103/PhysRevB.76.104523
-
(2007)
Phys. Rev. B
, vol.76
, pp. 104523
-
-
Analytis, J.G.1
Abdel-Jawad, M.2
Balicas, L.3
French, M.M.J.4
Hussey, N.E.5
-
5
-
-
0344121734
-
-
10.1080/00018730310001621737
-
C. Bergemann, A. P. Mackenzie, S. R. Julian, D. Forsythe, and E. Ohmichi, Adv. Phys. 52, 639 (2003). 10.1080/00018730310001621737
-
(2003)
Adv. Phys.
, vol.52
, pp. 639
-
-
Bergemann, C.1
MacKenzie, A.P.2
Julian, S.R.3
Forsythe, D.4
Ohmichi, E.5
-
6
-
-
28844494590
-
-
10.1103/PhysRevLett.95.196407
-
L. Balicas, S. Nakatsuji, D. Hall, T. Ohnishi, Z. Fisk, Y. Maeno, and D. J. Singh, Phys. Rev. Lett. 95, 196407 (2005). 10.1103/PhysRevLett.95.196407
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 196407
-
-
Balicas, L.1
Nakatsuji, S.2
Hall, D.3
Ohnishi, T.4
Fisk, Z.5
Maeno, Y.6
Singh, D.J.7
-
7
-
-
10344249394
-
-
10.1021/cr0306891
-
M. V. Kartsovnik, Chem. Rev. 104, 5737 (2004). 10.1021/cr0306891
-
(2004)
Chem. Rev.
, vol.104
, pp. 5737
-
-
Kartsovnik, M.V.1
-
10
-
-
85039017155
-
-
10.1103/PhysRevB.67.235110
-
U. Beierlein, C. Schlenker, J. Dumas, and M. Greenblatt, Phys. Rev. B 67, 235110 (2003). 10.1103/PhysRevB.67.235110
-
(2003)
Phys. Rev. B
, vol.67
, pp. 235110
-
-
Beierlein, U.1
Schlenker, C.2
Dumas, J.3
Greenblatt, M.4
-
11
-
-
33144467097
-
-
10.1103/PhysRevB.73.045115
-
K. Enomoto, S. Uji, T. Yamaguchi, T. Terashima, T. Konoike, M. Nishimura, T. Enoki, M. Suzuki, and I. S. Suzuki, Phys. Rev. B 73, 045115 (2006). 10.1103/PhysRevB.73.045115
-
(2006)
Phys. Rev. B
, vol.73
, pp. 045115
-
-
Enomoto, K.1
Uji, S.2
Yamaguchi, T.3
Terashima, T.4
Konoike, T.5
Nishimura, M.6
Enoki, T.7
Suzuki, M.8
Suzuki, I.S.9
-
16
-
-
39849103436
-
-
N. E. Hussey, M. Abdel-Jawad, L. Balicas, M. P. Kennett, and R. H. McKenzie, Physica B 403, 982 (2008).
-
(2008)
Physica B
, vol.403
, pp. 982
-
-
Hussey, N.E.1
Abdel-Jawad, M.2
Balicas, L.3
Kennett, M.P.4
McKenzie, R.H.5
-
17
-
-
34547216889
-
-
10.1103/PhysRevLett.99.027004
-
J. Singleton, P. A. Goddard, A. Ardavan, A. I. Coldea, S. J. Blundell, R. D. McDonald, S. Tozer, and J. A. Schlueter, Phys. Rev. Lett. 99, 027004 (2007). 10.1103/PhysRevLett.99.027004
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 027004
-
-
Singleton, J.1
Goddard, P.A.2
Ardavan, A.3
Coldea, A.I.4
Blundell, S.J.5
McDonald, R.D.6
Tozer, S.7
Schlueter, J.A.8
-
18
-
-
46149083226
-
-
10.1103/PhysRevB.77.235123
-
M. F. Smith and R. H. McKenzie, Phys. Rev. B 77, 235123 (2008). 10.1103/PhysRevB.77.235123
-
(2008)
Phys. Rev. B
, vol.77
, pp. 235123
-
-
Smith, M.F.1
McKenzie, R.H.2
-
19
-
-
33845192012
-
-
10.1038/nphys478a
-
L. Taillefer, Nat. Phys. 2, 809 (2006). 10.1038/nphys478a
-
(2006)
Nat. Phys.
, vol.2
, pp. 809
-
-
Taillefer, L.1
-
20
-
-
77954722247
-
-
arXiv:0905.2504
-
M. M. J. French, J. G. Analytis, A. Carrington, L. Balicas and N. E. Hussey, arXiv:0905.2504, New J. Phys. (to be published).
-
New J. Phys.
-
-
French, M.M.J.1
Analytis, J.G.2
Carrington, A.3
Balicas, L.4
Hussey, N.E.5
-
24
-
-
45749148675
-
-
10.1088/0034-4885/71/6/062501
-
S. Hufner, M. A. Hossain, A. Damascelli, and G. A. Sawatzky, Rep. Prog. Phys. 71, 062501 (2008). 10.1088/0034-4885/71/6/062501
-
(2008)
Rep. Prog. Phys.
, vol.71
, pp. 062501
-
-
Hufner, S.1
Hossain, M.A.2
Damascelli, A.3
Sawatzky, G.A.4
-
25
-
-
77954706588
-
-
private communication.
-
N. E. Hussey, private communication.
-
-
-
Hussey, N.E.1
-
26
-
-
35949000515
-
-
10.1103/PhysRevB.76.174501
-
M. R. Norman, A. Kanigel, M. Randeria, U. Chatterjee, and J. C. Campuzano, Phys. Rev. B 76, 174501 (2007). 10.1103/PhysRevB.76.174501
-
(2007)
Phys. Rev. B
, vol.76
, pp. 174501
-
-
Norman, M.R.1
Kanigel, A.2
Randeria, M.3
Chatterjee, U.4
Campuzano, J.C.5
-
28
-
-
70249146960
-
-
10.1209/0295-5075/86/37002
-
K.-Y. Yang, H.-B. Yang, P. D. Johnson, T. M. Rice, and F.-C. Zhang, EPL 86, 37002 (2009). 10.1209/0295-5075/86/37002
-
(2009)
EPL
, vol.86
, pp. 37002
-
-
Yang, K.-Y.1
Yang, H.-B.2
Johnson, P.D.3
Rice, T.M.4
Zhang, F.-C.5
-
29
-
-
67349284330
-
-
10.1016/j.aop.2009.02.004
-
K. Le Hur and T. M. Rice, Ann. Phys. 324, 1452 (2009). 10.1016/j.aop.2009.02.004
-
(2009)
Ann. Phys.
, vol.324
, pp. 1452
-
-
Le Hur, K.1
Rice, T.M.2
-
30
-
-
0034909281
-
-
10.1103/PhysRevB.63.094503
-
S. Chakravarty, R. B. Laughlin, D. K. Morr, and C. Nayak, Phys. Rev. B 63, 094503 (2001). 10.1103/PhysRevB.63.094503
-
(2001)
Phys. Rev. B
, vol.63
, pp. 094503
-
-
Chakravarty, S.1
Laughlin, R.B.2
Morr, D.K.3
Nayak, C.4
-
31
-
-
58249112969
-
-
10.1103/RevModPhys.81.45
-
H. Alloul, J. Bobroff, M. Gabay, and P. J. Hirschfeld, Rev. Mod. Phys. 81, 45 (2009). 10.1103/RevModPhys.81.45
-
(2009)
Rev. Mod. Phys.
, vol.81
, pp. 45
-
-
Alloul, H.1
Bobroff, J.2
Gabay, M.3
Hirschfeld, P.J.4
-
32
-
-
77954696721
-
-
We here use a classical force law in which the quasiparticle group velocity vg =d Ek /dk couples to B, which also follows from a straightforward replacement k→k-eA in the spectral function appearing in the tunneling current. An alternative coupling [used in Ref., see also Ref.)], is obtained by making the replacement as follows: Ek-eA →√ ξ k-eA 2 + Δk2 so that the Lorentz force term is e vb ×B with vb = ( ξk / Ek ) d ξk /dk. As long as the magnitude of the pseudogap is small compared to the Fermi energy, the choice of vg versus vb makes little difference to interlayer current calculation with θB =π/2.
-
We here use a classical force law in which the quasiparticle group velocity v g = d E k / d k couples to B, which also follows from a straightforward replacement k → k - e A in the spectral function appearing in the tunneling current. An alternative coupling [used in Ref., see also Ref.)], is obtained by making the replacement as follows: E k - e A → √ ξ k - e A 2 + Δ k 2 so that the Lorentz force term is e v b × B with v b = (ξ k / E k) d ξ k / d k. As long as the magnitude of the pseudogap is small compared to the Fermi energy, the choice of v g versus v b makes little difference to interlayer current calculation with θ B = π / 2.
-
-
-
-
33
-
-
27144508050
-
-
10.1103/PhysRevLett.95.077001;
-
M. Platé, J. D. F. Mottershead, I. S. Elfimov, D. C. Peets, R. Liang, D. A. Bonn, W. N. Hardy, S. Chiuzbaian, M. Falub, M. Shi, L. Patthey, and A. Damascelli, Phys. Rev. Lett. 95, 077001 (2005) 10.1103/PhysRevLett.95.077001
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 077001
-
-
Platé, M.1
Mottershead, J.D.F.2
Elfimov, I.S.3
Peets, D.C.4
Liang, R.5
Bonn, D.A.6
Hardy, W.N.7
Chiuzbaian, S.8
Falub, M.9
Shi, M.10
Patthey, L.11
Damascelli, A.12
-
34
-
-
33847147590
-
-
10.1088/1367-2630/9/2/028
-
D. C. Peets, J. P. F. Mottershead, B. Wu, I. S. Elfimov, R. Liang, W. N. Hardy, D. A. Bonn, M. Raudsepp, N. J. C. Ingle, and A. Damascelli, New J. Phys. 9, 28 (2007). 10.1088/1367-2630/9/2/028
-
(2007)
New J. Phys.
, vol.9
, pp. 28
-
-
Peets, D.C.1
Mottershead, J.P.F.2
Wu, B.3
Elfimov, I.S.4
Liang, R.5
Hardy, W.N.6
Bonn, D.A.7
Raudsepp, M.8
Ingle, N.J.C.9
Damascelli, A.10
-
35
-
-
77954717269
-
-
note
-
In constructing the plots of Fig., we have not taken into account any potential field dependence of the magnitude of the pseudogap. One can interpret Δ 0 as the value of the pseudogap in the presence of a certain field B, the magnitude of which is parameterized by ω C τ, and in this way allow for some B dependence of Δ 0 within these plots. In Ref., an applied field of 60 T results in a reduction in the pseudogap (defined via T -dependent interlayer resistivity data) in slightly overdoped BSCCO by less than 30% from its zero-field value. On the other hand, fields of 50 T are sufficient, according to Ref., to achieve values of ω C τ 0.5 in clean T 2201 samples. It would thus appear that the field dependence of ω C τ, and not that of Δ 0, would be most important in controlling the behavior of the interlayer resistivity over the parameter ranges considered in Fig.. So, while a field-dependent Δ 0 could be included for quantitative analysis, it is not expected to alter the qualitative picture described above.
-
-
-
-
37
-
-
0019592467
-
-
10.1080/00018738100101407
-
A. G. Aronov, Adv. Phys. 30, 539 (1981). 10.1080/00018738100101407
-
(1981)
Adv. Phys.
, vol.30
, pp. 539
-
-
Aronov, A.G.1
-
38
-
-
0035907835
-
-
10.1103/PhysRevLett.86.5763
-
T. Shibauchi, L. Krusin-Elbaum, M. Li, M. P. Maley, and P. H. Kes, Phys. Rev. Lett. 86, 5763 (2001). 10.1103/PhysRevLett.86.5763
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 5763
-
-
Shibauchi, T.1
Krusin-Elbaum, L.2
Li, M.3
Maley, M.P.4
Kes, P.H.5
|