메뉴 건너뛰기




Volumn , Issue , 2010, Pages 211-220

Approximation schemes for steiner forest on planar graphs and graphs of bounded treewidth

Author keywords

bounded genus graphs; bounded treewidth graphs; planar graphs; PTAS; series parallel graphs; Steiner forest

Indexed keywords

APPROXIMATION SCHEME; BOUNDED TREEWIDTH; BUILDING BLOCKES; CLUSTERING PROCEDURE; MINIMUM CUT; NP-HARD; PLANAR GRAPH; POLYNOMIAL TIME APPROXIMATION SCHEMES; POLYNOMIAL-TIME; PRIZE-COLLECTING; SERIES-PARALLEL GRAPH; STEINER FOREST PROBLEM; STEINER FORESTS; STEINER TREES; TREE DECOMPOSITION; TREE-WIDTH;

EID: 77954751021     PISSN: 07378017     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1806689.1806720     Document Type: Conference Paper
Times cited : (14)

References (32)
  • 1
    • 0029322754 scopus 로고
    • When trees collide: An approximation algorithm for the generalized Steiner problem on networks
    • A. Agrawal, P. Klein, and R. Ravi. When trees collide: an approximation algorithm for the generalized Steiner problem on networks. SIAM J. Comput., 24(3):440-456, 1995.
    • (1995) SIAM J. Comput. , vol.24 , Issue.3 , pp. 440-456
    • Agrawal, A.1    Klein, P.2    Ravi, R.3
  • 2
    • 85031939748 scopus 로고
    • When trees collide: An approximation algorithm for the generalized Steiner problem on networks
    • A. Agrawal, P. N. Klein, and R. Ravi. When trees collide: An approximation algorithm for the generalized Steiner problem on networks. In STOC, pages 134-144, 1991.
    • (1991) STOC , pp. 134-144
    • Agrawal, A.1    Klein, P.N.2    Ravi, R.3
  • 3
    • 77952418184 scopus 로고    scopus 로고
    • Improved approximation algorithms for prize-collecting Steiner tree and TSP
    • A. Archer, M. Bateni, M. Hajiaghayi, and H. Karloff. Improved approximation algorithms for prize-collecting Steiner tree and TSP. In FOCS, 2009.
    • (2009) FOCS
    • Archer, A.1    Bateni, M.2    Hajiaghayi, M.3    Karloff, H.4
  • 4
    • 0030413554 scopus 로고    scopus 로고
    • Polynomial time approximation schemes for Euclidean TSP and other geometric problems
    • S. Arora. Polynomial time approximation schemes for Euclidean TSP and other geometric problems. In FOCS, page 2, 1996.
    • (1996) FOCS , pp. 2
    • Arora, S.1
  • 5
    • 0032156828 scopus 로고    scopus 로고
    • Polynomial Time Approximation Schemes for Euclidean Traveling Salesman and Other Geometric Problems
    • S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM, 45(5):753-782, 1998. (Pubitemid 128497506)
    • (1998) Journal of the ACM , vol.45 , Issue.5 , pp. 753-782
    • Arora, S.1
  • 6
    • 77954727870 scopus 로고    scopus 로고
    • Approximation schemes for Steiner forest on planar graphs and graphs of bounded treewidth
    • abs/0911.5143
    • M. Bateni, M. Hajiaghayi, and D. Marx. Approximation schemes for Steiner forest on planar graphs and graphs of bounded treewidth. CoRR, abs/0911.5143, 2009.
    • (2009) CoRR
    • Bateni, M.1    Hajiaghayi, M.2    Marx, D.3
  • 7
    • 84990728999 scopus 로고
    • Improved approximations for the Steiner tree problem
    • P. Berman and V. Ramaiyer. Improved approximations for the Steiner tree problem. In SODA, pages 325-334, 1992.
    • (1992) SODA , pp. 325-334
    • Berman, P.1    Ramaiyer, V.2
  • 8
    • 0024735782 scopus 로고
    • The Steiner problem with edge lengths 1 and 2
    • M. Bern and P. Plassmann. The Steiner problem with edge lengths 1 and 2. Information Processing Letters, 32:171-176, 1989.
    • (1989) Information Processing Letters , vol.32 , pp. 171-176
    • Bern, M.1    Plassmann, P.2
  • 9
    • 0002981945 scopus 로고    scopus 로고
    • A partial k-arboretum of graphs with bounded treewidth
    • H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science, 209(1-2):1-45, 1998.
    • (1998) Theoretical Computer Science , vol.209 , Issue.1-2 , pp. 1-45
    • Bodlaender, H.L.1
  • 10
    • 84880200521 scopus 로고    scopus 로고
    • Polynomial-time approximation schemes for subset-connectivity problems in bounded genus graphs
    • G. Borradaile, E. D. Demaine, and S. Tazari. Polynomial-time approximation schemes for subset-connectivity problems in bounded genus graphs. In STACS, pages 171-182, 2009.
    • (2009) STACS , pp. 171-182
    • Borradaile, G.1    Demaine, E.D.2    Tazari, S.3
  • 11
    • 57949110002 scopus 로고    scopus 로고
    • A polynomial-time approximation scheme for Euclidean Steiner forest
    • G. Borradaile, P. N. Klein, and C. Mathieu. A polynomial-time approximation scheme for Euclidean Steiner forest. In FOCS, pages 115-124, 2008.
    • (2008) FOCS , pp. 115-124
    • Borradaile, G.1    Klein, P.N.2    Mathieu, C.3
  • 12
    • 84969151285 scopus 로고    scopus 로고
    • A polynomial-time approximation scheme for Steiner tree in planar graphs
    • G. Borradaile, C. Mathieu, and P. N. Klein. A polynomial-time approximation scheme for Steiner tree in planar graphs. In SODA, pages 1285-1294, 2007.
    • (2007) SODA , pp. 1285-1294
    • Borradaile, G.1    Mathieu, C.2    Klein, P.N.3
  • 13
    • 84969219565 scopus 로고    scopus 로고
    • Approximation algorithms via contraction decomposition
    • E. D. Demaine, M. Hajiaghayi, and B. Mohar. Approximation algorithms via contraction decomposition. In SODA, pages 278-287, 2007.
    • (2007) SODA , pp. 278-287
    • Demaine, E.D.1    Hajiaghayi, M.2    Mohar, B.3
  • 15
    • 0000727336 scopus 로고
    • The rectilinear Steiner tree problem is NP-complete
    • M. R. Garey and D. S. Johnson. The rectilinear Steiner tree problem is NP-complete. SIAM J. Appl. Math., 32(4):826-834, 1977.
    • (1977) SIAM J. Appl. Math. , vol.32 , Issue.4 , pp. 826-834
    • Garey, M.R.1    Johnson, D.S.2
  • 16
    • 77954746130 scopus 로고    scopus 로고
    • The Steiner forest problem revisited
    • In Press, Corrected Proof
    • E. Gassner. The Steiner forest problem revisited. J. Disc. Alg., In Press, Corrected Proof, 2009.
    • (2009) J. Disc. Alg.
    • Gassner, E.1
  • 17
    • 0029289832 scopus 로고
    • A general approximation technique for constrained forest problems
    • M. X. Goemans and D. P. Williamson. A general approximation technique for constrained forest problems. SIAM J. Comput., 24(2):296-317, 1995.
    • (1995) SIAM J. Comput. , vol.24 , Issue.2 , pp. 296-317
    • Goemans, M.X.1    Williamson, D.P.2
  • 19
    • 0002884211 scopus 로고
    • On the computational complexity of combinatorial problems
    • R. M. Karp. On the computational complexity of combinatorial problems. Networks, 5:45-68, 1975.
    • (1975) Networks , vol.5 , pp. 45-68
    • Karp, R.M.1
  • 20
    • 0002756840 scopus 로고    scopus 로고
    • New approximation algorithms for the Steiner tree problems
    • M. Karpinski and A. Zelikovsky. New approximation algorithms for the Steiner tree problems. J. Comb. Opt., 1(1):47-65, 1997.
    • (1997) J. Comb. Opt. , vol.1 , Issue.1 , pp. 47-65
    • Karpinski, M.1    Zelikovsky, A.2
  • 21
    • 55249098651 scopus 로고    scopus 로고
    • A linear-time approximation scheme for TSP in undirected planar graphs with edge-weights
    • P. N. Klein. A linear-time approximation scheme for TSP in undirected planar graphs with edge-weights. SIAM J. Comput., 37(6):1926-1952, 2008.
    • (2008) SIAM J. Comput. , vol.37 , Issue.6 , pp. 1926-1952
    • Klein, P.N.1
  • 22
    • 24144485906 scopus 로고    scopus 로고
    • NP-completeness of list coloring and precoloring extension on the edges of planar graphs
    • D. Marx. NP-completeness of list coloring and precoloring extension on the edges of planar graphs. J. Graph Theory, 49(4):313-324, 2005.
    • (2005) J. Graph Theory , vol.49 , Issue.4 , pp. 313-324
    • Marx, D.1
  • 23
    • 60649118921 scopus 로고    scopus 로고
    • Complexity results for minimum sum edge coloring
    • D. Marx. Complexity results for minimum sum edge coloring. Discrete Applied Mathematics, 157(5):1034-1045, 2009.
    • (2009) Discrete Applied Mathematics , vol.157 , Issue.5 , pp. 1034-1045
    • Marx, D.1
  • 24
    • 0032667193 scopus 로고    scopus 로고
    • Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems
    • J. S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems. SIAM Journal on Computing, 28(4):1298-1309, 1999.
    • (1999) SIAM Journal on Computing , vol.28 , Issue.4 , pp. 1298-1309
    • Mitchell, J.S.B.1
  • 26
    • 0022948837 scopus 로고
    • On multiple Steiner subgraph problems
    • M. B. Richey and R. G. Parker. On multiple Steiner subgraph problems. Networks, 16(4):423-438, 1986.
    • (1986) Networks , vol.16 , Issue.4 , pp. 423-438
    • Richey, M.B.1    Parker, R.G.2
  • 27
    • 33644608040 scopus 로고    scopus 로고
    • Tighter bounds for graph Steiner tree approximation
    • G. Robins and A. Zelikovsky. Tighter bounds for graph Steiner tree approximation. SIAM J. Disc. Math., 19(1):122-134, 2005.
    • (2005) SIAM J. Disc. Math. , vol.19 , Issue.1 , pp. 122-134
    • Robins, G.1    Zelikovsky, A.2
  • 28
    • 0037463533 scopus 로고    scopus 로고
    • On the approximability of the Steiner tree problem
    • M. Thimm. On the approximability of the Steiner tree problem. Theor. Comput. Sci., 295(1-3):387-402, 2003.
    • (2003) Theor. Comput. Sci. , vol.295 , Issue.1-3 , pp. 387-402
    • Thimm, M.1
  • 30
    • 0000857177 scopus 로고
    • An 11/6-approximation algorithm for the network Steiner problem
    • A. Zelikovsky. An 11/6-approximation algorithm for the network Steiner problem. Algorithmica, 9(5):463-470, 1993.
    • (1993) Algorithmica , vol.9 , Issue.5 , pp. 463-470
    • Zelikovsky, A.1
  • 32
    • 84867453493 scopus 로고    scopus 로고
    • The edge-disjoint paths problem is NP-complete for partial k-trees
    • Springer, Berlin
    • X. Zhou and T. Nishizeki. The edge-disjoint paths problem is NP-complete for partial k-trees. In Algorithms and computation (Taejon, 1998), pages 417-426. Springer, Berlin, 1998.
    • (1998) Algorithms and Computation (Taejon, 1998) , pp. 417-426
    • Zhou, X.1    Nishizeki, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.