-
1
-
-
48249152189
-
-
10.1126/science.1159725
-
J. P. Heremans, Science 321, 554 (2008). 10.1126/science.1159725
-
(2008)
Science
, vol.321
, pp. 554
-
-
Heremans, J.P.1
-
2
-
-
0000321051
-
-
10.1139/p56-134
-
J. Friedel, Can. J. Phys. 34, 1190 (1956). 10.1139/p56-134
-
(1956)
Can. J. Phys.
, vol.34
, pp. 1190
-
-
Friedel, J.1
-
4
-
-
0001395669
-
-
10.1051/jphysrad:01959002002-3016000
-
A. Blandin and J. Friedel, J. Phys. Radium 20, 160 (1959). 10.1051/jphysrad:01959002002-3016000
-
(1959)
J. Phys. Radium
, vol.20
, pp. 160
-
-
Blandin, A.1
Friedel, J.2
-
5
-
-
2742518803
-
-
10.1143/PTP.34.372
-
J. Kondo, Prog. Theor. Phys. 34, 372 (1965). 10.1143/PTP.34.372
-
(1965)
Prog. Theor. Phys.
, vol.34
, pp. 372
-
-
Kondo, J.1
-
6
-
-
23044534470
-
-
10.1070/PU2002v045n08ABEH001146
-
B. A. Volkov, Phys. Usp. 45, 819 (2002). 10.1070/PU2002v045n08ABEH001146
-
(2002)
Phys. Usp.
, vol.45
, pp. 819
-
-
Volkov, B.A.1
-
10
-
-
40849094549
-
-
10.1063/1.2890150
-
V. Jovovic, J. Appl. Phys. 103, 053710 (2008). 10.1063/1.2890150
-
(2008)
J. Appl. Phys.
, vol.103
, pp. 053710
-
-
Jovovic, V.1
-
11
-
-
0016942411
-
-
10.1002/pssb.2220740218
-
H. Köhler, Phys. Status Solidi B 74, 591 (1976). 10.1002/pssb.2220740218
-
(1976)
Phys. Status Solidi B
, vol.74
, pp. 591
-
-
Köhler, H.1
-
12
-
-
34247866171
-
-
edited by O. Madelung, Landolt-Bornstein, New Series, Group III, Vol. Springer-Verlag, Berlin
-
Physics of Non-Tetrahedrally Bonded Binary Compounds II, edited by, O. Madelung,, Landolt-Bornstein, New Series, Group III, Vol. 17, Pt. f (Springer-Verlag, Berlin, 1983); the integrated density of states mass is the density of states mass of each pocket of the Fermi surface, multiplied by the number of pockets to the power 2/3.
-
(1983)
Physics of Non-Tetrahedrally Bonded Binary Compounds II
, vol.17
-
-
-
14
-
-
0001446056
-
-
10.1103/PhysRevB.50.16921
-
V. A. Kulbachinskii, Phys. Rev. B 50, 16921 (1994). 10.1103/PhysRevB.50. 16921
-
(1994)
Phys. Rev. B
, vol.50
, pp. 16921
-
-
Kulbachinskii, V.A.1
-
15
-
-
0031542192
-
-
10.1002/1521-3951(199702)199:2
-
V. A. Kulbachinskii, Phys. Status Solidi 199, 505 (1997). 10.1002/1521-3951(199702)199:2
-
(1997)
Phys. Status Solidi
, vol.199
, pp. 505
-
-
Kulbachinskii, V.A.1
-
16
-
-
77954704322
-
-
Proceedings of the 16th International Conference on Thermoelectricity, IEEE
-
M. K. Zhitinskaya, Proceedings of the 16th International Conference on Thermoelectricity, IEEE 1997 (unpublished), p. 97.
-
(1997)
, pp. 97
-
-
Zhitinskaya, M.K.1
-
18
-
-
26244465254
-
-
10.1063/1.2037209
-
J. P. Heremans, J. Appl. Phys. 98, 063703 (2005). 10.1063/1.2037209
-
(2005)
J. Appl. Phys.
, vol.98
, pp. 063703
-
-
Heremans, J.P.1
-
19
-
-
19744381896
-
-
10.1103/PhysRevB.70.115334
-
J. P. Heremans, Phys. Rev. B 70, 115334 (2004). 10.1103/PhysRevB.70. 115334
-
(2004)
Phys. Rev. B
, vol.70
, pp. 115334
-
-
Heremans, J.P.1
-
20
-
-
0011105032
-
-
10.1023/A:1017541912810
-
N. Miyajima, J. Low Temp. Phys. 123, 219 (2001). 10.1023/A:1017541912810
-
(2001)
J. Low Temp. Phys.
, vol.123
, pp. 219
-
-
Miyajima, N.1
-
21
-
-
77954747442
-
-
note
-
We could analyze the SdH results two ways: either the two oscillation frequencies arise from two different sets of degenerate sections of the Fermi surface, or the second frequency is a harmonic, and we just have one set of Fermi surface sections. Taking the second frequency as real, we calculate that it would correspond to cross-sections of the Fermi surface that are consistent with the LVB of Ref.. If we push this hypothesis further, we could use the Fermi level, total Hall carrier density, and SdH carrier density and effective mass of the UVB to deduce the density of carriers left in the LVB and their masses. The LVB hole density calculated under that hypothesis would be 2-5 times larger than that of the UVB, and the calculated LVB masses would approximately 1.5 - 3 m e, heavier than previously suggested. Furthermore, the LVB masses would appear to depend on tin concentration. This mathematical possibility is unphysical because it contradicts the calculations based on the four transport parameters (Fermi level, effective mass, scattering exponent, and mobility), and because the second frequency can be assigned to spin splitting, Ref..
-
-
-
-
23
-
-
77954718890
-
-
The Seebeck coefficient of Bi2 Te3 is anisotropic in general, but the partial Seebeck coefficients of each electron or hole pocket of the Fermi surface are scalars. The anisotropy arises from the fact that the total Seebeck coefficient is an average of the partial coefficients of each pocket weighted by the partial conductivities of those pockets, which are anisotropic. S11 is dominated by the partial hole Seebeck coefficient S in moderately p -type material.
-
The Seebeck coefficient of Bi 2 Te 3 is anisotropic in general, but the partial Seebeck coefficients of each electron or hole pocket of the Fermi surface are scalars. The anisotropy arises from the fact that the total Seebeck coefficient is an average of the partial coefficients of each pocket weighted by the partial conductivities of those pockets, which are anisotropic. S 11 is dominated by the partial hole Seebeck coefficient S in moderately p -type material.
-
-
-
-
25
-
-
19244383596
-
-
10.1080/14786430410001678226
-
T. Plecháček, Philos. Mag. 84, 2217 (2004). 10.1080/14786430410001678226
-
(2004)
Philos. Mag.
, vol.84
, pp. 2217
-
-
Plecháček, T.1
-
26
-
-
77954737609
-
-
Measured by the authors.
-
Measured by the authors.
-
-
-
-
28
-
-
0017633827
-
-
10.1002/pssb.2220840226
-
W. Richter, Phys. Status Solidi 84, 619 (1977). 10.1002/pssb.2220840226
-
(1977)
Phys. Status Solidi
, vol.84
, pp. 619
-
-
Richter, W.1
-
29
-
-
0000508710
-
-
in edited by D. M. Rowe (CRC Press, Boca Raton, FL
-
S. Scherer and H. Scherer, in CRC handbook on Thermoelectricity, edited by, D. M. Rowe, (CRC Press, Boca Raton, FL, 1995), Chap., p. 211.
-
(1995)
CRC Handbook on Thermoelectricity
, pp. 211
-
-
Scherer, S.1
Scherer, H.2
|