-
2
-
-
33744692787
-
-
10.1103/PhysRevD.48.5863;
-
S. D. Głazek and K. G. Wilson, Phys. Rev. D 48, 5863 (1993) 10.1103/PhysRevD.48.5863
-
(1993)
Phys. Rev. D
, vol.48
, pp. 5863
-
-
Głazek, S.D.1
Wilson, K.G.2
-
3
-
-
26344479641
-
-
10.1103/PhysRevD.49.4214
-
S. D. Głazek and K. G. Wilson, Phys. Rev. D 49, 4214 (1994). 10.1103/PhysRevD.49.4214
-
(1994)
Phys. Rev. D
, vol.49
, pp. 4214
-
-
Głazek, S.D.1
Wilson, K.G.2
-
4
-
-
52949090071
-
-
10.1103/PhysRevB.78.092303
-
A. Hackl and S. Kehrein, Phys. Rev. B 78, 092303 (2008). 10.1103/PhysRevB.78.092303
-
(2008)
Phys. Rev. B
, vol.78
, pp. 092303
-
-
Hackl, A.1
Kehrein, S.2
-
6
-
-
77954742959
-
-
Here and in the following, we employ units, where = kB =1.
-
Here and in the following, we employ units, where = k B = 1.
-
-
-
-
7
-
-
43049102381
-
-
10.1103/PhysRevLett.100.175702
-
M. Moeckel and S. Kehrein, Phys. Rev. Lett. 100, 175702 (2008). 10.1103/PhysRevLett.100.175702
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 175702
-
-
Moeckel, M.1
Kehrein, S.2
-
8
-
-
68949217119
-
-
10.1016/j.aop.2009.03.009
-
M. Moeckel and S. Kehrein, Ann. Phys. 324, 2146 (2009). 10.1016/j.aop.2009.03.009
-
(2009)
Ann. Phys.
, vol.324
, pp. 2146
-
-
Moeckel, M.1
Kehrein, S.2
-
9
-
-
28544447482
-
-
10.1103/PhysRevB.71.193303
-
D. Lobaskin and S. Kehrein, Phys. Rev. B 71, 193303 (2005). 10.1103/PhysRevB.71.193303
-
(2005)
Phys. Rev. B
, vol.71
, pp. 193303
-
-
Lobaskin, D.1
Kehrein, S.2
-
10
-
-
28844489602
-
-
10.1103/PhysRevLett.95.196801
-
F. B. Anders and A. Schiller, Phys. Rev. Lett. 95, 196801 (2005). 10.1103/PhysRevLett.95.196801
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 196801
-
-
Anders, F.B.1
Schiller, A.2
-
11
-
-
33845681267
-
-
10.1103/PhysRevB.74.245113
-
F. B. Anders and A. Schiller, Phys. Rev. B 74, 245113 (2006). 10.1103/PhysRevB.74.245113
-
(2006)
Phys. Rev. B
, vol.74
, pp. 245113
-
-
Anders, F.B.1
Schiller, A.2
-
13
-
-
65649130519
-
-
10.1103/PhysRevLett.102.196601
-
A. Hackl, D. Roosen, S. Kehrein, and W. Hofstetter, Phys. Rev. Lett. 102, 196601 (2009). 10.1103/PhysRevLett.102.196601
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 196601
-
-
Hackl, A.1
Roosen, D.2
Kehrein, S.3
Hofstetter, W.4
-
15
-
-
0542414329
-
-
10.1088/0022-3719/3/12/008
-
P. W. Anderson, J. Phys. C 3, 2436 (1970). 10.1088/0022-3719/3/12/008
-
(1970)
J. Phys. C
, vol.3
, pp. 2436
-
-
Anderson, P.W.1
-
17
-
-
77954748741
-
-
The full unitary transformation U can be expressed as an B -ordered exponential, U= TB exp [∫0∞ η (B) dB ]. However, this expression is only formally useful since it cannot be evaluated without additional approximations.
-
The full unitary transformation U can be expressed as an B -ordered exponential, U = T B exp [∫ 0 ∞ η (B) d B]. However, this expression is only formally useful since it cannot be evaluated without additional approximations.
-
-
-
-
18
-
-
27144509096
-
-
10.1103/PhysRevLett.95.056602
-
S. Kehrein, Phys. Rev. Lett. 95, 056602 (2005). 10.1103/PhysRevLett.95. 056602
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 056602
-
-
Kehrein, S.1
-
21
-
-
77954734238
-
-
In all numerical calculations, we will use a flat conduction electron band with energy range [-D,D ] and the half width D is chosen as D=1.
-
In all numerical calculations, we will use a flat conduction electron band with energy range [- D, D] and the half width D is chosen as D = 1.
-
-
-
-
23
-
-
33646525016
-
-
10.1080/14786430500070396
-
M. Vojta, Philos. Mag. 86, 1807 (2006). 10.1080/14786430500070396
-
(2006)
Philos. Mag.
, vol.86
, pp. 1807
-
-
Vojta, M.1
-
24
-
-
77954696568
-
-
M. Pletyukhov, D. Schuricht, and H. Schoeller, arXiv:0910.0119
-
M. Pletyukhov, D. Schuricht, and H. Schoeller, arXiv:0910.0119.
-
-
-
|