-
1
-
-
0002480682
-
The expressive power of voting polynomials
-
Preliminary version in 23rd STOC, 1991
-
J. ASPNES, R. BEIGEL, M. L. FURST, and S. RUDICH. The expressive power of voting polynomials. Combinatorica, 14(2):135-148, 1994. (Preliminary version in 23rd STOC, 1991).
-
(1994)
Combinatorica
, vol.14
, Issue.2
, pp. 135-148
-
-
Aspnes, J.1
Beigel, R.2
Furst, M.L.3
Rudich, S.4
-
2
-
-
33748109164
-
Approximate nearest neighbors and the fast johnson-lindenstrauss transform
-
ACM, New York, NY, USA
-
N. AILON and B. CHAZELLE. Approximate nearest neighbors and the fast johnson-lindenstrauss transform. In STOC, pages 557-563. ACM, New York, NY, USA, 2006.
-
(2006)
STOC
, pp. 557-563
-
-
Ailon, N.1
Chazelle, B.2
-
3
-
-
0345106484
-
Quantum lower bounds by polynomials
-
(Preliminary version in 39th FOCS, 1998). arXiv:quant-ph/9802049
-
ROBERT BEALS, HARRY BUHRMAN, RICHARD CLEVE, MICHELE MOSCA, and RONALD DE WOLF. Quantum lower bounds by polynomials. Journal of the ACM, 48(4):778-797, 2001. (Preliminary version in 39th FOCS, 1998). arXiv:quant-ph/9802049.
-
(2001)
Journal of the ACM
, vol.48
, Issue.4
, pp. 778-797
-
-
Beals, R.1
Buhrman, H.2
Cleve, R.3
Mosca, M.4
De Wolf, R.5
-
7
-
-
77955261042
-
A regularity lemma, and low-weight approximators, for low-degree polynomial threshold functions
-
to appear
-
ILIAS DIAKONIKOLAS, ROCCO A. SERVEDIO, LI-YANG TAN, and ANDREW WAN. A regularity lemma, and low-weight approximators, for low-degree polynomial threshold functions. In CCC, to appear. 2010.
-
CCC
, pp. 2010
-
-
Diakonikolas, I.1
Servedio, R.A.2
Tan, L.-Y.3
Andrew, W.A.N.4
-
8
-
-
77955235747
-
Fooling functions of halfspaces under product distributions
-
to appear
-
PARIKSHIT GOPALAN, RYAN O'DONNELL, YI WU, and DAVID ZUCKERMAN. Fooling functions of halfspaces under product distributions. In CCC, to appear. 2010.
-
CCC
, pp. 2010
-
-
Gopalan, P.1
O'Donnell, R.2
Wu, Y.I.3
Zuckerman, D.4
-
9
-
-
70349155021
-
Finding duplicates in a data stream
-
PARIKSHIT GOPALAN and JAIKUMAR RADHAKRISHNAN. Finding duplicates in a data stream. In SODA, pages 402-411. 2009.
-
(2009)
SODA
, pp. 402-411
-
-
Gopalan, P.1
Radhakrishnan, J.2
-
10
-
-
0000420294
-
On the size of weights for threshold gates
-
JOHAN HASTAD. On the size of weights for threshold gates. SIAM J. Discret. Math., 7(3):484-492, 1994.
-
(1994)
SIAM J. Discret. Math.
, vol.7
, Issue.3
, pp. 484-492
-
-
Hastad, J.1
-
12
-
-
77954805501
-
An invariance principle for polytopes
-
to appear
-
PRAHLADH HARSHA, ADAM KLIVANS, and RAGHU MEKA. . An invariance principle for polytopes. In STOC, to appear. 2010.
-
(2010)
STOC
-
-
Harsha, P.1
Klivans, A.2
Meka, R.3
-
13
-
-
0028022375
-
Pseudorandomness for network algorithms
-
RUSSELL IMPAGLIAZZO, NOAM NISAN, and AVI WIGDERSON. Pseudorandomness for network algorithms. In STOC, pages 356-364. 1994.
-
(1994)
STOC
, pp. 356-364
-
-
Impagliazzo, R.1
Nisan, N.2
Wigderson, A.V.I.3
-
14
-
-
77954756402
-
Explicit dimension reduction and its applications
-
ZOHAR SHAY KARNIN, YUVAL RABANI, and AMIR SHPILKA. Explicit dimension reduction and its applications. ECCC, 16(121), 2009.
-
(2009)
ECCC
, vol.16
, Issue.121
-
-
Karnin, Z.S.1
Rabani, Y.2
Shpilka, A.3
-
16
-
-
33748602908
-
Noise stability of functions with low influences: Invariance and optimality
-
ELCHANAN MOSSEL, RYAN O'DONNELL, and KRZYSZTOF OLESZKIEWICZ. Noise stability of functions with low influences: invariance and optimality. In FOCS, pages 21-30. 2005.
-
(2005)
FOCS
, pp. 21-30
-
-
Mossel, E.1
O'Donnell, R.2
Oleszkiewicz, K.3
-
17
-
-
0001384677
-
How fast can a threshold gate learn?
-
MIT Press, Cambridge, MA, USA
-
WOLFGANG MAASS and GYÖRGY TURÁN. How fast can a threshold gate learn? In Proceedings of a workshop on Computational learning theory and natural learning systems (vol. 1) : constraints and prospects, pages 381-414. MIT Press, Cambridge, MA, USA, 1994.
-
(1994)
Proceedings of a Workshop on Computational Learning Theory and Natural Learning Systems (Vol. 1): Constraints and Prospects
, pp. 381-414
-
-
Maass, W.1
Turán, G.2
-
18
-
-
0000947929
-
Pseudorandom generators for space-bounded computation
-
NOAM NISAN. Pseudorandom generators for space-bounded computation. Combinatorica, 12(4):449-461, 1992.
-
(1992)
Combinatorica
, vol.12
, Issue.4
, pp. 449-461
-
-
Nisan, N.1
-
19
-
-
0027641832
-
Small-bias probability spaces: Efficient constructions and applications
-
JOSEPH NAOR and MONI NAOR. Small-bias probability spaces: Efficient constructions and applications. SIAM Journal on Computing, 22(4):838-856, 1993.
-
(1993)
SIAM Journal on Computing
, vol.22
, Issue.4
, pp. 838-856
-
-
Naor, J.1
Naor, M.2
-
20
-
-
0030086632
-
Randomness is linear in space
-
NOAM NISAN and DAVID ZUCKERMAN. Randomness is linear in space. J. Comput. Syst. Sci., 52(1):43-52, 1996.
-
(1996)
J. Comput. Syst. Sci.
, vol.52
, Issue.1
, pp. 43-52
-
-
Nisan, N.1
Zuckerman, D.2
-
21
-
-
57149087094
-
Some topics in analysis of boolean functions
-
ACM, New York, NY, USA
-
RYAN O'DONNELL. Some topics in analysis of boolean functions. In STOC, pages 569-578. ACM, New York, NY, USA, 2008.
-
(2008)
STOC
, pp. 569-578
-
-
O'Donnell, R.1
-
22
-
-
70350694417
-
Explicit construction of a small epsilon-net for linear threshold functions
-
YUVAL RABANI and AMIR SHPILKA. Explicit construction of a small epsilon-net for linear threshold functions. In STOC, pages 649-658. 2009.
-
(2009)
STOC
, pp. 649-658
-
-
Rabani, Y.1
Shpilka, A.2
-
23
-
-
34247484531
-
Every linear threshold function has a low-weight approximator
-
ROCCO A. SERVEDIO. Every linear threshold function has a low-weight approximator. In CCC, pages 18-32. 2006.
-
(2006)
CCC
, pp. 18-32
-
-
Servedio, R.A.1
-
24
-
-
0036040280
-
Algorithmic derandomization via complexity theory
-
ACM, New York, NY, USA
-
D. SIVAKUMAR. Algorithmic derandomization via complexity theory. In STOC, pages 619-626. ACM, New York, NY, USA, 2002.
-
(2002)
STOC
, pp. 619-626
-
-
Sivakumar, D.1
|