-
1
-
-
0000686344
-
-
10.1103/PhysRev.49.653
-
J. Bardeen, Phys. Rev. 49, 653 (1936). 10.1103/PhysRev.49.653
-
(1936)
Phys. Rev.
, vol.49
, pp. 653
-
-
Bardeen, J.1
-
2
-
-
0001009872
-
-
in edited by H. Eirenreich, F. Seitz, and D. Turnball (Academic, New York
-
N. D. Lang, in Solid State Physics, edited by, H. Eirenreich, F. Seitz, and, D. Turnball, (Academic, New York, 1973), Vol. 28, p. 225.
-
(1973)
Solid State Physics
, vol.28
, pp. 225
-
-
Lang, N.D.1
-
3
-
-
35949027123
-
-
10.1103/PhysRevB.1.4555
-
N. D. Lang and W. Kohn, Phys. Rev. B 1, 4555 (1970). 10.1103/PhysRevB.1. 4555
-
(1970)
Phys. Rev. B
, vol.1
, pp. 4555
-
-
Lang, N.D.1
Kohn, W.2
-
5
-
-
0035371086
-
-
For a recent review on electronic-surface calculations, see, 10.1016/S0010-4655(01)00175-8
-
For a recent review on electronic-surface calculations, see M. Nekovee and J. M. Pitarke, Comput. Phys. Commun. 137, 123 (2001). 10.1016/S0010-4655(01) 00175-8
-
(2001)
Comput. Phys. Commun.
, vol.137
, pp. 123
-
-
Nekovee, M.1
Pitarke, J.M.2
-
8
-
-
0242593713
-
-
10.1103/PhysRevLett.91.146401
-
J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003). 10.1103/PhysRevLett.91.146401
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 146401
-
-
Tao, J.1
Perdew, J.P.2
Staroverov, V.N.3
Scuseria, G.E.4
-
9
-
-
3343014295
-
-
10.1016/0375-9601(96)00054-0;
-
A. Solomatin and V. Sahni, Phys. Lett. A 212, 263 (1996) 10.1016/0375-9601(96)00054-0
-
(1996)
Phys. Lett. A
, vol.212
, pp. 263
-
-
Solomatin, A.1
Sahni, V.2
-
10
-
-
0342756427
-
-
10.1103/PhysRevB.56.3655
-
A. Solomatin and V. Sahni, Phys. Rev. B 56, 3655 (1997). 10.1103/PhysRevB.56.3655
-
(1997)
Phys. Rev. B
, vol.56
, pp. 3655
-
-
Solomatin, A.1
Sahni, V.2
-
11
-
-
0031232450
-
-
10.1006/aphy.1997.5705
-
A. Solomatin and V. Sahni, Ann. Phys. 259, 97 (1997). 10.1006/aphy.1997.5705
-
(1997)
Ann. Phys.
, vol.259
, pp. 97
-
-
Solomatin, A.1
Sahni, V.2
-
12
-
-
77954756573
-
-
Ph. D. thesis, Queen's University
-
F. Nastos, Ph. D. thesis, Queen's University, 2000.
-
(2000)
-
-
Nastos, F.1
-
13
-
-
49149101702
-
-
10.1103/PhysRevB.78.035136
-
H. Luo, W. Hackbusch, H.-J. Flad, and D. Kolb, Phys. Rev. B 78, 035136 (2008). 10.1103/PhysRevB.78.035136
-
(2008)
Phys. Rev. B
, vol.78
, pp. 035136
-
-
Luo, H.1
Hackbusch, W.2
Flad, H.-J.3
Kolb, D.4
-
14
-
-
77954746271
-
-
/3 rs a0 ≈3.274 rs a0.
-
/ 3 r s a 0 ≈ 3.274 r s a 0.
-
-
-
-
16
-
-
0003846693
-
-
in edited by V. I. Anisimov (Gordon and Breach, Amsterdam
-
T. Grabo, J. Kreibich, S. Kurth, and E. K. U. Gross, in Strong Coulomb Interactions in Electronic Structure Calculations: Beyond the Local Density Approximation, edited by, V. I. Anisimov, (Gordon and Breach, Amsterdam, 2000).
-
(2000)
Strong Coulomb Interactions in Electronic Structure Calculations: Beyond the Local Density Approximation
-
-
Grabo, T.1
Kreibich, J.2
Kurth, S.3
Gross, E.K.U.4
-
17
-
-
77954711827
-
-
This Hartree potential includes the contribution coming from the uniform positive background (proportional to n+). Alternatively, this contribution could have been denoted separately as the "external potential."
-
This Hartree potential includes the contribution coming from the uniform positive background (proportional to n +). Alternatively, this contribution could have been denoted separately as the "external potential."
-
-
-
-
18
-
-
77954736228
-
-
-3, as corresponds to our 3D system. However, because of the slab geometry the number density here only depends on one spatial coordinate z.
-
- 3, as corresponds to our 3D system. However, because of the slab geometry the number density here only depends on one spatial coordinate z.
-
-
-
-
19
-
-
77954714665
-
-
-1 in Eq. .
-
- 1 in Eq..
-
-
-
-
23
-
-
0035934243
-
-
10.1063/1.1388047
-
J. Tao, J. Chem. Phys. 115, 3519 (2001). 10.1063/1.1388047
-
(2001)
J. Chem. Phys.
, vol.115
, pp. 3519
-
-
Tao, J.1
-
25
-
-
77954710405
-
-
) 2 =2 me ( εF - ε1 ) / 2 =2πd n̄, this limit ( ε1 < εF < ε2 ) can be achieved either for narrow slabs (d→0 ) or in the low-density limit n̄ →0.
-
) 2 = 2 m e (ε F - ε 1) / 2 = 2 π d n ̄, this limit (ε 1 < ε F < ε 2) can be achieved either for narrow slabs (d → 0) or in the low-density limit n ̄ → 0.
-
-
-
-
26
-
-
77954715877
-
-
Note that z̄ m =-d/2 and z2 ̄ m >0. Thus, βm is always negative as a sum of two negative terms and γm is always positive as a sum of two positive terms.
-
Note that z ̄ m = - d / 2 and z 2 ̄ m > 0. Thus, β m is always negative as a sum of two negative terms and γ m is always positive as a sum of two positive terms.
-
-
-
-
28
-
-
0000396135
-
-
10.1103/PhysRevA.51.1944
-
O. Gritsenko, R. van Leeuwen, E. van Lenthe, and E. J. Baerends, Phys. Rev. A 51, 1944 (1995). 10.1103/PhysRevA.51.1944
-
(1995)
Phys. Rev. A
, vol.51
, pp. 1944
-
-
Gritsenko, O.1
Van Leeuwen, R.2
Van Lenthe, E.3
Baerends, E.J.4
-
32
-
-
54449101269
-
-
10.1103/PhysRevB.78.155106
-
L. A. Constantin, Phys. Rev. B 78, 155106 (2008). 10.1103/PhysRevB.78. 155106
-
(2008)
Phys. Rev. B
, vol.78
, pp. 155106
-
-
Constantin, L.A.1
-
35
-
-
77954733759
-
-
The definition of W entering Eq. (23) of Ref. is not the work function (as defined here) but the barrier height ( WSS =W+ εF ) instead.
-
The definition of W entering Eq. (23) of Ref. is not the work function (as defined here) but the barrier height (W S S = W + ε F) instead.
-
-
-
-
38
-
-
77954733076
-
-
Most of the calculations presented here have been found to be well converged by locating the two infinite barriers at 8 λF from each jellium edge. For the case of one single-occupied SDL, the two infinite barriers have been taken at 10 λF from each jellium edge.
-
Most of the calculations presented here have been found to be well converged by locating the two infinite barriers at 8 λ F from each jellium edge. For the case of one single-occupied SDL, the two infinite barriers have been taken at 10 λ F from each jellium edge.
-
-
-
-
40
-
-
0004062749
-
-
Wolfram Research, Inc., Version 7.0, Champaign, IL
-
Wolfram Research, Inc., MATHEMATICA, Version 7.0, Champaign, IL, 2008.
-
(2008)
Mathematica
-
-
-
41
-
-
77954733418
-
-
See, for instance, Eq. 12.2.6 on page 498 of Ref.
-
See, for instance, Eq. 12.2.6 on page 498 of Ref..
-
-
-
|