메뉴 건너뛰기




Volumn 43, Issue 12, 2010, Pages 1910-1921

Quantitative determination of the components in corn and tobacco samples by using near-infrared spectroscopy and multiblock partial least squares

Author keywords

Chemometrics; Multiblock; Near infrared (NIR) spectrum; Partial least squares (PLS); Quantitative analysis

Indexed keywords

NICOTIANA TABACUM; ZEA MAYS;

EID: 77954586638     PISSN: 00032719     EISSN: 1532236X     Source Type: Journal    
DOI: 10.1080/00032711003686973     Document Type: Article
Times cited : (19)

References (50)
  • 1
    • 0036685120 scopus 로고    scopus 로고
    • Applicational aspects of support vector machines
    • Belousov, A. I., S. A. Verzakov, and J. von Frese. 2002. Applicational aspects of support vector machines. J. Chemometrics 16: 482-489.
    • (2002) J. Chemometrics , vol.16 , pp. 482-489
    • Belousov, A.I.1    Verzakov, S.A.2    von Frese, J.3
  • 2
    • 84972936527 scopus 로고
    • Direct spectrophotometric determination of fat and moisture in meat products
    • Ben-Gera, I., and K. H. Norris. 1968. Direct spectrophotometric determination of fat and moisture in meat products. J. Food Sci. 33: 64-67.
    • (1968) J. Food Sci , vol.33 , pp. 64-67
    • Ben-Gera, I.1    Norris, K.H.2
  • 3
    • 0000226493 scopus 로고    scopus 로고
    • A serial extension of multiblock PLS
    • Berglund, A., and S. Wold. 1999. A serial extension of multiblock PLS. J. Chemometrics 13: 461-471.
    • (1999) J. Chemometrics , vol.13 , pp. 461-471
    • Berglund, A.1    Wold, S.2
  • 4
    • 0000203752 scopus 로고
    • Optimal minimal neural interpretation of spectra
    • Borggard, C., and H. Thodberg. 1992. Optimal minimal neural interpretation of spectra. Anal. Chem. 64: 545-551.
    • (1992) Anal. Chem , vol.64 , pp. 545-551
    • Borggard, C.1    Thodberg, H.2
  • 5
    • 11144260364 scopus 로고    scopus 로고
    • Multiblock PLS as an approach to compare and combine NIR and MIR spectra in calibrations of soybean flour
    • Bras, L. P., S. A. Bernardino, J. A. Lopes, and J. C. Menezes. 2005. Multiblock PLS as an approach to compare and combine NIR and MIR spectra in calibrations of soybean flour. Chemometrics Intell. Lab. Syst. 75: 91-99.
    • (2005) Chemometrics Intell. Lab. Syst , vol.75 , pp. 91-99
    • Bras, L.P.1    Bernardino, S.A.2    Lopes, J.A.3    Menezes, J.C.4
  • 6
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. 1996. Bagging predictors. Mach. Learn. 24: 123-140.
    • (1996) Mach. Learn , vol.24 , pp. 123-140
    • Breiman, L.1
  • 7
    • 2842581444 scopus 로고    scopus 로고
    • Frameworks for latent variable multivariate regression
    • Burnham, A. J., R. Viveros, and J. F. MacGregor. 1996. Frameworks for latent variable multivariate regression. J. Chemometrics 10: 31-45.
    • (1996) J. Chemometrics , vol.10 , pp. 31-45
    • Burnham, A.J.1    Viveros, R.2    Macgregor, J.F.3
  • 8
    • 38149087476 scopus 로고    scopus 로고
    • A variable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra
    • Cai, W. S., Y. K. Li, and X. G. Shao. 2008. A variable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra. Chemometrics Intell. Lab. Syst. 90: 188-194.
    • (2008) Chemometrics Intell. Lab. Syst , vol.90 , pp. 188-194
    • Cai, W.S.1    Li, Y.K.2    Shao, X.G.3
  • 9
    • 33846646373 scopus 로고    scopus 로고
    • An adaptive strategy for selecting representative calibration samples in the continuous wavelet domain for near-infrared spectral analysis
    • Chen, D., W. S. Cai, and X. G. Shao. 2007a. An adaptive strategy for selecting representative calibration samples in the continuous wavelet domain for near-infrared spectral analysis. Anal. Bioanal. Chem. 387: 1041-1048.
    • (2007) Anal. Bioanal. Chem , vol.387 , pp. 1041-1048
    • Chen, D.1    Cai, W.S.2    Shao, X.G.3
  • 10
    • 34547681617 scopus 로고    scopus 로고
    • Removing uncertain variables based on ensemble partial least squares
    • Chen, D., W. S. Cai, and X. G. Shao. 2007b. Removing uncertain variables based on ensemble partial least squares. Anal. Chim. Acta 598: 19-26.
    • (2007) Anal. Chim. Acta , vol.598 , pp. 19-26
    • Chen, D.1    Cai, W.S.2    Shao, X.G.3
  • 11
    • 44649158813 scopus 로고    scopus 로고
    • A strategy for enhancing the reliability of near-infrared spectral analysis
    • Chen, D., W. S. Cai, and X. G. Shao. 2008. A strategy for enhancing the reliability of near-infrared spectral analysis. Vib. Spectrosc 47: 113-118.
    • (2008) Vib. Spectrosc , vol.47 , pp. 113-118
    • Chen, D.1    Cai, W.S.2    Shao, X.G.3
  • 12
    • 3242668710 scopus 로고    scopus 로고
    • Variable selection by modifiedIPW (iterative predictor weighting)-PLS (partial least squares) in continuous waveletregression models
    • Chen, D., B. Hu, X. G. Shao, and Q. D. Su. 2004. Variable selection by modifiedIPW (iterative predictor weighting)-PLS (partial least squares) in continuous waveletregression models. Analyst 129: 664-669.
    • (2004) Analyst , vol.129 , pp. 664-669
    • Chen, D.1    Hu, B.2    Shao, X.G.3    Su, Q.D.4
  • 13
    • 15044353202 scopus 로고    scopus 로고
    • A new hybrid strategy for constructing a robust calibration model for near-infrared spectral analysis
    • Chen, D., B. Hu, X. G. Shao, and Q. D. Su. 2005. A new hybrid strategy for constructing a robust calibration model for near-infrared spectral analysis. Anal. Bioanal. Chem. 381: 795-805.
    • (2005) Anal. Bioanal. Chem , vol.381 , pp. 795-805
    • Chen, D.1    Hu, B.2    Shao, X.G.3    Su, Q.D.4
  • 14
    • 10444237307 scopus 로고    scopus 로고
    • Multiblock PLS-based localized process diagnosis
    • Choi, S. W., and I. B. Lee. 2005. Multiblock PLS-based localized process diagnosis. J. Process Control. 15: 295-306.
    • (2005) J. Process Control , vol.15 , pp. 295-306
    • Choi, S.W.1    Lee, I.B.2
  • 15
    • 33845421286 scopus 로고    scopus 로고
    • Chemometrics and visible-near infrared spectroscopic monitoring of red wine fermentation in a pilot scale
    • Cozzolino, D., M. Parker, and R. G. Dambergs. 2006. Chemometrics and visible-near infrared spectroscopic monitoring of red wine fermentation in a pilot scale. Biotechnol. Bioeng. 95: 1101-1107.
    • (2006) Biotechnol. Bioeng , vol.95 , pp. 1101-1107
    • Cozzolino, D.1    Parker, M.2    Dambergs, R.G.3
  • 16
    • 53649091311 scopus 로고    scopus 로고
    • Multivariate calibration by partial least squares for the quantitative phase analysis using rietveld method
    • de Oliveira, T. F., E. K. Epprecht, R. L. Ziolli, A. C. F. Saraiva, and R. R. de Avillez. 2008. Multivariate calibration by partial least squares for the quantitative phase analysis using rietveld method. J. Chemometrics 22: 141-148.
    • (2008) J. Chemometrics , vol.22 , pp. 141-148
    • de Oliveira, T.F.1    Epprecht, E.K.2    Ziolli, R.L.3    Saraiva, A.C.F.4    de Avillez, R.R.5
  • 18
    • 34250815100 scopus 로고    scopus 로고
    • Study of the application of multiway multivariate techniques to model data from an industrial fermentation process
    • Ferreira, A. P., J. A. Lopes, and J. C. Menezes. 2007. Study of the application of multiway multivariate techniques to model data from an industrial fermentation process. Anal. Chim. Acta 595: 120-127.
    • (2007) Anal. Chim. Acta , vol.595 , pp. 120-127
    • Ferreira, A.P.1    Lopes, J.A.2    Menezes, J.C.3
  • 19
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Freund, Y. 1995. Boosting a weak learning algorithm by majority. Inform. Comput. 121: 256-285.
    • (1995) Inform. Comput , vol.121 , pp. 256-285
    • Freund, Y.1
  • 21
    • 85152373811 scopus 로고
    • Notes on the history and nature of partial least squares (PLS) modeling
    • Geladi, P. 1988. Notes on the history and nature of partial least squares (PLS) modeling. J. Chemometrics 2: 231-246.
    • (1988) J. Chemometrics , vol.2 , pp. 231-246
    • Geladi, P.1
  • 22
    • 11144325691 scopus 로고
    • Partial least-squares regression: A tutoria
    • Geladi, P., and B. R. Kowalski. 1986. Partial least-squares regression: A tutoria. Anal. Chim. Acta 185: 1-17.
    • (1986) Anal. Chim. Acta , vol.185 , pp. 1-17
    • Geladi, P.1    Kowalski, B.R.2
  • 23
    • 0042280342 scopus 로고    scopus 로고
    • An evaluation of the PoLiSh smoothed regression and the Monte Carlo cross-validation for the determination of the complexity of a PLS model
    • Gourvenec, S., J. A. P. Fernandez, D. L. Massart, and D. N. Rutledge. 2003. An evaluation of the PoLiSh smoothed regression and the Monte Carlo cross-validation for the determination of the complexity of a PLS model. Chemometrics Intell. Lab. Syst. 68: 41-51.
    • (2003) Chemometrics Intell. Lab. Syst , vol.68 , pp. 41-51
    • Gourvenec, S.1    Fernandez, J.A.P.2    Massart, D.L.3    Rutledge, D.N.4
  • 24
    • 0001259111 scopus 로고    scopus 로고
    • Bayesian model averaging: A tutorial
    • Hoeting, J. A., D. Madigan, and A. E. Raftery. 1999. Bayesian model averaging: A tutorial. Stat. Sci. 14: 382-417.
    • (1999) Stat. Sci , vol.14 , pp. 382-417
    • Hoeting, J.A.1    Madigan, D.2    Raftery, A.E.3
  • 25
    • 47049084998 scopus 로고    scopus 로고
    • Principal component analysis-support vector regression and its application in near infrared spectral analysis
    • Hou, Z. Y., W. S. Cai, and X. G. Shao. 2006. Principal component analysis-support vector regression and its application in near infrared spectral analysis. Chin. J. Anal. Chem. 34: 617-620.
    • (2006) Chin. J. Anal. Chem , vol.34 , pp. 617-620
    • Hou, Z.Y.1    Cai, W.S.2    Shao, X.G.3
  • 26
    • 84894887900 scopus 로고
    • Computer aided design of experiments
    • Kennard, R. W., and L. A. Stone. 1969. Computer aided design of experiments. Technometrics11: 137-148.
    • (1969) Technometrics , vol.11 , pp. 137-148
    • Kennard, R.W.1    Stone, L.A.2
  • 27
    • 34548786094 scopus 로고    scopus 로고
    • Partial least square regression on frequency shift applied to passive acoustic emission spectra
    • Kupyna, A., E. O. Rukke, R. B. Schuller, H. Helland, and T. Isaksson. 2007. Partial least square regression on frequency shift applied to passive acoustic emission spectra. J. Chemometrics 21: 108-116.
    • (2007) J. Chemometrics , vol.21 , pp. 108-116
    • Kupyna, A.1    Rukke, E.O.2    Schuller, R.B.3    Helland, H.4    Isaksson, T.5
  • 28
    • 33947320459 scopus 로고    scopus 로고
    • A consensus least squares support vector regression (LS-SVR) for analysis of near-infrared spectra of plant samples
    • Li, Y. K., X. G. Shao, and W. S. Cai. 2007. A consensus least squares support vector regression (LS-SVR) for analysis of near-infrared spectra of plant samples. Talanta 72: 217-222.
    • (2007) Talanta , vol.72 , pp. 217-222
    • Li, Y.K.1    Shao, X.G.2    Cai, W.S.3
  • 29
    • 58849128616 scopus 로고    scopus 로고
    • A weighted multiscale regression for multivariate calibration of near infrared spectra
    • Liu, Z. C., W. S. Cai, and X. G. Shao. 2009. A weighted multiscale regression for multivariate calibration of near infrared spectra. Analyst 134: 261-266.
    • (2009) Analyst , vol.134 , pp. 261-266
    • Liu, Z.C.1    Cai, W.S.2    Shao, X.G.3
  • 30
    • 2942739420 scopus 로고    scopus 로고
    • Continuous wavelet transform applied to removing the fluctuating background in near-infrared spectra
    • Ma, C. X., and X. G. Shao. 2004. Continuous wavelet transform applied to removing the fluctuating background in near-infrared spectra. J. Chem. Inf. Comput. Sci. 44: 907-911.
    • (2004) J. Chem. Inf. Comput. Sci , vol.44 , pp. 907-911
    • Ma, C.X.1    Shao, X.G.2
  • 31
    • 0028424619 scopus 로고
    • Process monitoring and diagnosis by multiblock PLS methods
    • MacGregor, J. F., C. H. Jaeckle, C. Kiparissides, and M. Koutoudi. 1994. Process monitoring and diagnosis by multiblock PLS methods. AIChE J. 40: 826-838.
    • (1994) AIChE J , vol.40 , pp. 826-838
    • Macgregor, J.F.1    Jaeckle, C.H.2    Kiparissides, C.3    Koutoudi, M.4
  • 32
    • 16244390208 scopus 로고    scopus 로고
    • Mean squared error of prediction (MSEP) estimates for principal component regression (PCR) and partial least squares regression (PLSR)
    • Mevik B. H., and H. R. Cederkvist. 2004. Mean squared error of prediction (MSEP) estimates for principal component regression (PCR) and partial least squares regression (PLSR). J. Chemometrics 18: 422-429.
    • (2004) J. Chemometrics , vol.18 , pp. 422-429
    • Mevik, B.H.1    Cederkvist, H.R.2
  • 33
    • 36148988416 scopus 로고    scopus 로고
    • A new holistic exploratory approach to systems biology by near infrared spectroscopy evaluated by chemometrics and data inspection
    • Munck, L. 2007. A new holistic exploratory approach to systems biology by near infrared spectroscopy evaluated by chemometrics and data inspection. J. Chemometrics21: 406-426.
    • (2007) J. Chemometrics , vol.21 , pp. 406-426
    • Munck, L.1
  • 35
    • 0001282938 scopus 로고    scopus 로고
    • On unifying multiblock analysis with application to decentralized process monitoring
    • Qin, S. J., S. Valle, and M. J. Piovoso. 2001. On unifying multiblock analysis with application to decentralized process monitoring. J. Chemometrics 15: 715-742.
    • (2001) J. Chemometrics , vol.15 , pp. 715-742
    • Qin, S.J.1    Valle, S.2    Piovoso, M.J.3
  • 36
    • 34249307438 scopus 로고    scopus 로고
    • Investigations of bagged kernel partial least squares (KPLS) and boosting KPLS with applications to near-infrared (NIR) spectra
    • Shinzawa, H., J. H. Jiang, P. Ritthiruangdej, and Y. Ozaki. 2006. Investigations of bagged kernel partial least squares (KPLS) and boosting KPLS with applications to near-infrared (NIR) spectra. J. Chemometrics 20: 436-444.
    • (2006) J. Chemometrics , vol.20 , pp. 436-444
    • Shinzawa, H.1    Jiang, J.H.2    Ritthiruangdej, P.3    Ozaki, Y.4
  • 37
    • 42649145887 scopus 로고    scopus 로고
    • Multiblock Variance Partitioning. A newapproach for comparing variation in multiple data blocks
    • Skov, T., D. Balabio, and R. Bro. 2008. Multiblock Variance Partitioning. A newapproach for comparing variation in multiple data blocks. Anal. Chim. Acta 615: 18-29.
    • (2008) Anal. Chim. Acta , vol.615 , pp. 18-29
    • Skov, T.1    Balabio, D.2    Bro, R.3
  • 38
    • 0042318557 scopus 로고    scopus 로고
    • A framework for sequential multiblock component methods
    • Smilde, A. K., J. A. Westerhuis, and S. De Jong. 2003. A framework for sequential multiblock component methods. J. Chemometrics 17: 323-337.
    • (2003) J. Chemometrics , vol.17 , pp. 323-337
    • Smilde, A.K.1    Westerhuis, J.A.2    de Jong, S.3
  • 39
    • 33846858448 scopus 로고    scopus 로고
    • Consensus analysis of multiple classifiers using non-repetitive variables: Diagnostic application to microarray gene expression data
    • Su, Z. Q., H. X. Hong, R. Perkins, X. G. Shao, W. S. Cai, and W. D. Tong. 2007. Consensus analysis of multiple classifiers using non-repetitive variables: Diagnostic application to microarray gene expression data. Comput. Biol. Chem. 31: 48-56.
    • (2007) Comput. Biol. Chem , vol.31 , pp. 48-56
    • Su, Z.Q.1    Hong, H.X.2    Perkins, R.3    Shao, X.G.4    Cai, W.S.5    Tong, W.D.6
  • 40
    • 11944258109 scopus 로고
    • Comparison of multivariate calibration methods for quantitative spectral analysis
    • Thomas, E. V., and D. M. Haaland. 1990. Comparison of multivariate calibration methods for quantitative spectral analysis. Anal. Chem. 62: 1091-1099.
    • (1990) Anal. Chem , vol.62 , pp. 1091-1099
    • Thomas, E.V.1    Haaland, D.M.2
  • 41
    • 85162731973 scopus 로고
    • A multiblock partial least squares algorithm for investigating complex chemical systems
    • Wangen, L. E., and B. R. Kowalski. 1989. A multiblock partial least squares algorithm for investigating complex chemical systems. J. Chemometrics 3: 3-20.
    • (1989) J. Chemometrics , vol.3 , pp. 3-20
    • Wangen, L.E.1    Kowalski, B.R.2
  • 42
    • 0000339654 scopus 로고    scopus 로고
    • Multivariate modeling of the pharmaceutical two-step process of wet granulation and tableting with multiblock partial least squares
    • Westerhuis, J. A., and P. M. J. Coenegracht. 1997. Multivariate modeling of the pharmaceutical two-step process of wet granulation and tableting with multiblock partial least squares. J. Chemometrics 11: 379-392.
    • (1997) J. Chemometrics , vol.11 , pp. 379-392
    • Westerhuis, J.A.1    Coenegracht, P.M.J.2
  • 43
    • 0000736392 scopus 로고    scopus 로고
    • Analysis of multiblock and hierarchical PCA and PLS models
    • Westerhuis, J. A., T. Kourti, and J. F. MacGregor. 1998. Analysis of multiblock and hierarchical PCA and PLS models. J. Chemometrics 12: 301-321.
    • (1998) J. Chemometrics , vol.12 , pp. 301-321
    • Westerhuis, J.A.1    Kourti, T.2    Macgregor, J.F.3
  • 44
    • 84951601886 scopus 로고
    • Cross-validatory estimation of the number of components in factor and principle components models
    • Wold, S. 1978. Cross-validatory estimation of the number of components in factor and principle components models. Technometrics 24: 397-405.
    • (1978) Technometrics , vol.24 , pp. 397-405
    • Wold, S.1
  • 46
    • 0001369487 scopus 로고    scopus 로고
    • Hierarchical multiblock PLS and PC modles for easier model interpretation and as an alternative to variable selection
    • Wold, S., N. Kettaneh, and K. Tjessem. 1996. Hierarchical multiblock PLS and PC modles for easier model interpretation and as an alternative to variable selection. J. Chemometrics10: 463-482.
    • (1996) J. Chemometrics , vol.10 , pp. 463-482
    • Wold, S.1    Kettaneh, N.2    Tjessem, K.3
  • 47
    • 24744433967 scopus 로고    scopus 로고
    • An adaptive wavelet algorithm used to multivariate calibration of near infrared spectra
    • Wu, R. H., and X. G. Shao. 2005. An adaptive wavelet algorithm used to multivariate calibration of near infrared spectra. Chin. J. Anal. Chem. 33: 1010-1012.
    • (2005) Chin. J. Anal. Chem , vol.33 , pp. 1010-1012
    • Wu, R.H.1    Shao, X.G.2
  • 48
    • 65649132723 scopus 로고    scopus 로고
    • A wavelength selection method based on randomization test for near-infrared spectral analysis. Chemometrics Intell
    • Xu, H., Z. C. Liu, W. S. Cai, and X. G. Shao. 2009. A wavelength selection method based on randomization test for near-infrared spectral analysis. Chemometrics Intell. Lab. Syst. 97: 189-193.
    • (2009) Lab. Syst , vol.97 , pp. 189-193
    • Xu, H.1    Liu, Z.C.2    Cai, W.S.3    Shao, X.G.4
  • 49
    • 0035897294 scopus 로고    scopus 로고
    • Monte Carlo cross validation. Chemometrics Intell
    • Xu, Q. S., and Y. Z. Liang. 2001. Monte Carlo cross validation. Chemometrics Intell. Lab. Syst. 56: 1-11.
    • (2001) Lab. Syst , vol.56 , pp. 1-11
    • Xu, Q.S.1    Liang, Y.Z.2
  • 50
    • 33847276241 scopus 로고    scopus 로고
    • Dry film method with ytterbium as the internal standard for near infrared spectroscopic plasma glucose assay coupled with boosting support vector regression
    • Zhou, Y. P., J. H. Jiang, H. L. Wu, G. L. Shen, R. Q. Yu, and Y. Ozaki. 2006. Dry film method with ytterbium as the internal standard for near infrared spectroscopic plasma glucose assay coupled with boosting support vector regression. J. Chemometrics20: 13-21.
    • (2006) J. Chemometrics , vol.20 , pp. 13-21
    • Zhou, Y.P.1    Jiang, J.H.2    Wu, H.L.3    Shen, G.L.4    Yu, R.Q.5    Ozaki, Y.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.