메뉴 건너뛰기




Volumn 2010, Issue , 2010, Pages

Razumikhin stability theorem for fractional systems with delay

Author keywords

[No Author keywords available]

Indexed keywords


EID: 77954552119     PISSN: 10853375     EISSN: 16870409     Source Type: Journal    
DOI: 10.1155/2010/124812     Document Type: Article
Times cited : (58)

References (23)
  • 2
    • 36249022993 scopus 로고    scopus 로고
    • San Diego, Calif, USA Academic Press Mathematics in Science and Engineering
    • Podlubny I., Fractional Differential Equations 1999 198 San Diego, Calif, USA Academic Press xxiv+340 Mathematics in Science and Engineering
    • (1999) Fractional Differential Equations , vol.198 , pp. 340
    • Podlubny, I.1
  • 6
    • 0021439912 scopus 로고
    • On the appearance of the fractional derivative in the behavior of real materials
    • Torvik P. J., Bagley R. L., On the appearance of the fractional derivative in the behavior of real materials Journal of Applied Mechanics, Transactions 1984 51 2 294 298
    • (1984) Journal of Applied Mechanics, Transactions , vol.51 , Issue.2 , pp. 294-298
    • Torvik, P.J.1    Bagley, R.L.2
  • 7
    • 0041511967 scopus 로고    scopus 로고
    • Time-delay systems: An overview of some recent advances and open problems
    • Richard J.-P., Time-delay systems: an overview of some recent advances and open problems Automatica 2003 39 10 1667 1694
    • (2003) Automatica , vol.39 , Issue.10 , pp. 1667-1694
    • Richard, J.-P.1
  • 8
    • 0029373148 scopus 로고
    • On sufficient conditions for stability independent of delay
    • Chen J., Xu D. M., Shafai B., On sufficient conditions for stability independent of delay IEEE Transactions on Automatic Control 1995 40 9 1675 1680
    • (1995) IEEE Transactions on Automatic Control , vol.40 , Issue.9 , pp. 1675-1680
    • Chen, J.1    Xu, D.M.2    Shafai, B.3
  • 14
    • 0032653954 scopus 로고    scopus 로고
    • Fractional-order systems and PID -controllers
    • Podlubny I., Fractional-order systems and PID -controllers IEEE Transactions on Automatic Control 1999 44 1 208 214
    • (1999) IEEE Transactions on Automatic Control , vol.44 , Issue.1 , pp. 208-214
    • Podlubny, I.1
  • 15
    • 0343715573 scopus 로고    scopus 로고
    • State-space representation for fractional order controllers
    • Raynaud H.-F., Zerganoh A., State-space representation for fractional order controllers Automatica 2000 36 7 1017 1021
    • (2000) Automatica , vol.36 , Issue.7 , pp. 1017-1021
    • Raynaud, H.-F.1    Zerganoh, A.2
  • 16
    • 27744589296 scopus 로고    scopus 로고
    • Finite time stability analysis of PD fractional control of robotic time-delay systems
    • Lazarevi M. P., Finite time stability analysis of PD fractional control of robotic time-delay systems Mechanics Research Communications 2006 33 2 269 279
    • (2006) Mechanics Research Communications , vol.33 , Issue.2 , pp. 269-279
    • Lazarevi, M.P.1
  • 17
    • 33947133956 scopus 로고    scopus 로고
    • Stability analysis of linear fractional differential system with multiple time delays
    • Deng W., Li C., L J., Stability analysis of linear fractional differential system with multiple time delays Nonlinear Dynamics 2007 48 4 409 416
    • (2007) Nonlinear Dynamics , vol.48 , Issue.4 , pp. 409-416
    • Deng, W.1    Li, C.2
  • 18
    • 57549092045 scopus 로고    scopus 로고
    • An efficient numerical algorithm for stability testing of fractional-delay systems
    • Merrikh-Bayat F., Karimi-Ghartemani M., An efficient numerical algorithm for stability testing of fractional-delay systems ISA Transactions 2009 48 1 32 37
    • (2009) ISA Transactions , vol.48 , Issue.1 , pp. 32-37
    • Merrikh-Bayat, F.1    Karimi-Ghartemani, M.2
  • 19
    • 38949212976 scopus 로고    scopus 로고
    • Some results of linear fractional order time-delay system
    • Zhang X., Some results of linear fractional order time-delay system Applied Mathematics and Computation 2008 197 1 407 411
    • (2008) Applied Mathematics and Computation , vol.197 , Issue.1 , pp. 407-411
    • Zhang, X.1
  • 21
    • 76449092011 scopus 로고    scopus 로고
    • Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability
    • Li Y., Chen Y., Podlubny I., Stability of fractional-order nonlinear dynamic systems: lyapunov direct method and generalized Mittag-Leffler stability Computers and Mathematics with Applications 2010 59 5 1810 1821
    • (2010) Computers and Mathematics with Applications , vol.59 , Issue.5 , pp. 1810-1821
    • Li, Y.1    Chen, Y.2    Podlubny, I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.