메뉴 건너뛰기




Volumn 52, Issue 3, 2010, Pages 297-313

Hierarchical Bayesian modeling of random and residual variance-covariance matrices in bivariate mixed effects models

Author keywords

Bivariate Bayesian modeling; Cholesky decomposition; Heterogeneous covariances; Mixed effects model

Indexed keywords

BAYESIAN NETWORKS; MARKOV PROCESSES; MONTE CARLO METHODS;

EID: 77954514569     PISSN: 03233847     EISSN: 15214036     Source Type: Journal    
DOI: 10.1002/bimj.200900182     Document Type: Article
Times cited : (18)

References (51)
  • 1
    • 0001043709 scopus 로고
    • Computational methods using a Bayesian hierarchical generalized linear model
    • Albert, J. H. (1988). Computational methods using a Bayesian hierarchical generalized linear model. Journal of the American Statistical Association 83, 1037-1044.
    • (1988) Journal of the American Statistical Association , vol.83 , pp. 1037-1044
    • Albert, J.H.1
  • 3
    • 33645973699 scopus 로고    scopus 로고
    • Multiple-breed genetic inference using heavy-tailed structural models for heterogeneous residual variances
    • Cardoso, F. F., Rosa, G. J. and Tempelman, R. J. (2005). Multiple-breed genetic inference using heavy-tailed structural models for heterogeneous residual variances. Journal of Animal Science 83, 1766-1779.
    • (2005) Journal of Animal Science , vol.83 , pp. 1766-1779
    • Cardoso, F.F.1    Rosa, G.J.2    Tempelman, R.J.3
  • 4
    • 34247258396 scopus 로고    scopus 로고
    • Accounting for outliers and heteroskedasticity in multibreed genetic evaluations of postweaning gain of Nelore-Hereford cattle
    • Cardoso, F. F., Rosa, G. J. and Tempelman, R. J. (2007). Accounting for outliers and heteroskedasticity in multibreed genetic evaluations of postweaning gain of Nelore-Hereford cattle. Journal of Animal Science 85, 909-918.
    • (2007) Journal of Animal Science , vol.85 , pp. 909-918
    • Cardoso, F.F.1    Rosa, G.J.2    Tempelman, R.J.3
  • 5
    • 0347994096 scopus 로고    scopus 로고
    • Random effects selection in linear mixed models
    • Chen, Z. and Dunson, D. B. (2003). Random effects selection in linear mixed models. Biometrics 59, 762-769.
    • (2003) Biometrics , vol.59 , pp. 762-769
    • Chen, Z.1    Dunson, D.B.2
  • 6
    • 32344446687 scopus 로고
    • Understanding the Metropolis-Hastings algorithm
    • Chib, S. and Greenberg, E. (1995). Understanding the Metropolis-Hastings algorithm. American Statistician 49, 327-335.
    • (1995) American Statistician , vol.49 , pp. 327-335
    • Chib, S.1    Greenberg, E.2
  • 7
    • 0003003642 scopus 로고    scopus 로고
    • Generalized linear mixed models
    • Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (Eds.), Chapman and Hall, London
    • Clayton, D. G. (1996). Generalized linear mixed models. In: Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (Eds.), Markov Chain Monte Carlo in Practice. Chapman and Hall, London, 275-302.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 275-302
    • Clayton, D.G.1
  • 8
    • 33746061693 scopus 로고    scopus 로고
    • Modeling genotype x environment interaction using additive genetic covariances of relatives for predicting breeding values of wheat genotypes
    • Crossa, J., Burgueno, J., Cornelius, P. L., McLaren, G., Trethowan, R. and Krishnamachari, A. (2006). Modeling genotype x environment interaction using additive genetic covariances of relatives for predicting breeding values of wheat genotypes. Crop Science 46, 1722-1733.
    • (2006) Crop Science , vol.46 , pp. 1722-1733
    • Crossa, J.1    Burgueno, J.2    Cornelius, P.L.3    McLaren, G.4    Trethowan, R.5    Krishnamachari, A.6
  • 9
    • 0038600714 scopus 로고    scopus 로고
    • Bayesian analysis of covariance matrices and dynamic models for longitudinal data
    • Daniels, M. J. and Pourahmadi, M. (2002). Bayesian analysis of covariance matrices and dynamic models for longitudinal data. Biometrika 89, 553-566.
    • (2002) Biometrika , vol.89 , pp. 553-566
    • Daniels, M.J.1    Pourahmadi, M.2
  • 10
    • 1642368615 scopus 로고    scopus 로고
    • Lessons for cluster randomized trials in the twenty-first century: a systematic review of trials in primary care
    • Eldridge, S. M., Ashby, D., Feder, G. S., Rudnicka, A. R. and Ukoumunne, O. C. (2004). Lessons for cluster randomized trials in the twenty-first century: a systematic review of trials in primary care. Clinical Trials 1, 80-90.
    • (2004) Clinical Trials , vol.1 , pp. 80-90
    • Eldridge, S.M.1    Ashby, D.2    Feder, G.S.3    Rudnicka, A.R.4    Ukoumunne, O.C.5
  • 11
    • 0002989548 scopus 로고
    • 3rd Edn, Interstate Publishers Inc, Danville Illinois, USA
    • Ensminger, M. E. (1993). Dairy Cattle Science, 3rd Edn, Interstate Publishers Inc, Danville Illinois, USA.
    • (1993) Dairy Cattle Science
    • Ensminger, M.E.1
  • 13
    • 0000950556 scopus 로고    scopus 로고
    • On a multivariate implementation of the Gibbs sampler
    • GarciaCortes, L. A. and Sorensen, D. (1996). On a multivariate implementation of the Gibbs sampler. Genetics Selection Evolution 28, 121-126.
    • (1996) Genetics Selection Evolution , vol.28 , pp. 121-126
    • GarciaCortes, L.A.1    Sorensen, D.2
  • 14
    • 0442309445 scopus 로고    scopus 로고
    • Identifiability, improper priors, and Gibbs sampling for generalized linear models
    • Gelfand, A. E. and Sahu, K. (1999). Identifiability, improper priors, and Gibbs sampling for generalized linear models. Journal of the American Statistical Association 94, 247-253.
    • (1999) Journal of the American Statistical Association , vol.94 , pp. 247-253
    • Gelfand, A.E.1    Sahu, K.2
  • 16
    • 84867086419 scopus 로고    scopus 로고
    • Prior distributions for variance parameters in hierarchical models
    • Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models. Bayesian Analysis 1, 515-533.
    • (2006) Bayesian Analysis , vol.1 , pp. 515-533
    • Gelman, A.1
  • 17
    • 61849120056 scopus 로고    scopus 로고
    • Selection for environmental variation: a statistical analysis and power calculations to detect response
    • Ibanez-Escriche, N., Sorensen, D., Waagepetersen, R. and Blasco, A. (2008). Selection for environmental variation: a statistical analysis and power calculations to detect response. Genetics 180, 2209-2226.
    • (2008) Genetics , vol.180 , pp. 2209-2226
    • Ibanez-Escriche, N.1    Sorensen, D.2    Waagepetersen, R.3    Blasco, A.4
  • 18
    • 77954524672 scopus 로고    scopus 로고
    • Bayesian functional ANOVA modeling using Gaussian process prior distributions
    • Kaufman, C. G. and Sain, S. R. (2010). Bayesian functional ANOVA modeling using Gaussian process prior distributions. Bayesian Analysis 5, 123-149.
    • (2010) Bayesian Analysis , vol.5 , pp. 123-149
    • Kaufman, C.G.1    Sain, S.R.2
  • 19
    • 34548381836 scopus 로고    scopus 로고
    • Fixed and random effects selection in linear and logistic models
    • Kinney, S. K. and Dunson, D. B. (2007). Fixed and random effects selection in linear and logistic models. Biometrics 63, 690-698.
    • (2007) Biometrics , vol.63 , pp. 690-698
    • Kinney, S.K.1    Dunson, D.B.2
  • 20
    • 11444259077 scopus 로고    scopus 로고
    • A general approach to mixed effects modeling of residual variances in generalized linear mixed models
    • Kizilkaya, K. and Tempelman, R. J. (2005). A general approach to mixed effects modeling of residual variances in generalized linear mixed models. Genetic Selection and Evolution 37, 31-56.
    • (2005) Genetic Selection and Evolution , vol.37 , pp. 31-56
    • Kizilkaya, K.1    Tempelman, R.J.2
  • 21
    • 85153287601 scopus 로고    scopus 로고
    • SPARSEM: Sparse Linear Algebra R package Version 0.80
    • Koenker, R. and Ng, P. (2009). SPARSEM: Sparse Linear Algebra. R package Version 0.80.
    • (2009)
    • Koenker, R.1    Ng, P.2
  • 24
    • 0012342630 scopus 로고    scopus 로고
    • Hierarchical generalised linear models: a synthesis of generalised linear models random-effect models and structured dispersions
    • Lee, Y. and Nelder, J. A. (2001). Hierarchical generalised linear models: a synthesis of generalised linear models, random-effect models and structured dispersions. Biometrika 88, 987-1006.
    • (2001) Biometrika , vol.88 , pp. 987-1006
    • Lee, Y.1    Nelder, J.A.2
  • 25
    • 33644629431 scopus 로고    scopus 로고
    • Double hierarchical generalized linear models, Journal of the Royal Statistical Society
    • Lee, Y. and Nelder, J. A. (2006). Double hierarchical generalized linear models. Journal of the Royal Statistical Society, Series C - Applied Statistics 55, 139-167.
    • (2006) Series C - Applied Statistics , vol.55 , pp. 139-167
    • Lee, Y.1    Nelder, J.A.2
  • 28
    • 0035379705 scopus 로고    scopus 로고
    • Reproductive loss in high-producing dairy cattle: where will it end?
    • Lucy, M. C. (2001). Reproductive loss in high-producing dairy cattle: where will it end? Journal of Dairy Science 84, 1277-1293.
    • (2001) Journal of Dairy Science , vol.84 , pp. 1277-1293
    • Lucy, M.C.1
  • 29
    • 0035350685 scopus 로고    scopus 로고
    • Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology
    • Mauricio, R. (2001). Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology. Nature Reviews Genetics 2, 370-381.
    • (2001) Nature Reviews Genetics , vol.2 , pp. 370-381
    • Mauricio, R.1
  • 31
    • 34249081199 scopus 로고    scopus 로고
    • Prediction of breeding values and selection responses with genetic heterogeneity of environmental variance
    • Mulder, H. A., Bijma, P. and Hill, W. G. (2007). Prediction of breeding values and selection responses with genetic heterogeneity of environmental variance. Genetics 175, 1895-1910.
    • (2007) Genetics , vol.175 , pp. 1895-1910
    • Mulder, H.A.1    Bijma, P.2    Hill, W.G.3
  • 33
    • 42149153862 scopus 로고    scopus 로고
    • BLUP for phenotypic selection in plant breeding and variety testing
    • Piepho, H. P., Mohring, J., Melchinger, A. E. and Buchse, A. (2008). BLUP for phenotypic selection in plant breeding and variety testing. Euphytica 161, 209-228.
    • (2008) Euphytica , vol.161 , pp. 209-228
    • Piepho, H.P.1    Mohring, J.2    Melchinger, A.E.3    Buchse, A.4
  • 34
    • 0012806293 scopus 로고    scopus 로고
    • Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation
    • Pourahmadi, M. (1999). Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation. Biometrika 86, 677-690.
    • (1999) Biometrika , vol.86 , pp. 677-690
    • Pourahmadi, M.1
  • 35
    • 37549012210 scopus 로고    scopus 로고
    • Cholesky decompositions and estimation of a covariance matrix: orthogonality of variance-correlation parameters
    • Pourahmadi, M. (2007). Cholesky decompositions and estimation of a covariance matrix: orthogonality of variance-correlation parameters. Biometrika 94, 1006-1013.
    • (2007) Biometrika , vol.94 , pp. 1006-1013
    • Pourahmadi, M.1
  • 36
    • 0036192069 scopus 로고    scopus 로고
    • Dynamic conditionally linear mixed models for longitudinal data
    • Pourahmadi, M. and Daniels, M. J. (2002). Dynamic conditionally linear mixed models for longitudinal data. Biometrics 58, 225-231.
    • (2002) Biometrics , vol.58 , pp. 225-231
    • Pourahmadi, M.1    Daniels, M.J.2
  • 37
    • 84863304598 scopus 로고    scopus 로고
    • R Development Core Team Version 2.8.1. R Foundation for Statistical Computing, Vienna, Austria
    • R Development Core Team (2008). R: A language and environment for statistical computing. Version 2.8.1. R Foundation for Statistical Computing, Vienna, Austria.
    • (2008) R: A language and environment for statistical computing
  • 38
    • 0003994296 scopus 로고
    • Raftery, A. E. and Lewis, S. (eds) Oxford University Press, Oxford, UK
    • Raftery, A. E. and Lewis, S. (eds) (1992). How Many Iterations in the Gibbs Sampler? Oxford University Press, Oxford, UK.
    • (1992) How Many Iterations in the Gibbs Sampler?
  • 39
    • 33846216340 scopus 로고    scopus 로고
    • An evaluation of bivariate random-effects meta-analysis for the joint synthesis of two correlated outcomes
    • Riley, R. D., Abrams, K. R., Lambert, P. C., Sutton, A. J. and Thompson, J. R. (2007). An evaluation of bivariate random-effects meta-analysis for the joint synthesis of two correlated outcomes. Statistics in Medicine 26, 78-97.
    • (2007) Statistics in Medicine , vol.26 , pp. 78-97
    • Riley, R.D.1    Abrams, K.R.2    Lambert, P.C.3    Sutton, A.J.4    Thompson, J.R.5
  • 40
    • 84972496336 scopus 로고
    • That BLUP is a good thing the estimation of random effects
    • Robinson, G. K. (1991). That BLUP is a good thing the estimation of random effects. Statistical Science 6, 15-51.
    • (1991) Statistical Science , vol.6 , pp. 15-51
    • Robinson, G.K.1
  • 45
    • 1842434304 scopus 로고    scopus 로고
    • Normal linear models with genetically structured residual variance heterogeneity: a case study
    • Sorensen, D. and Waagepetersen, R. (2003). Normal linear models with genetically structured residual variance heterogeneity: a case study. Genetical Research 82, 207-222.
    • (2003) Genetical Research , vol.82 , pp. 207-222
    • Sorensen, D.1    Waagepetersen, R.2
  • 49
    • 38249039771 scopus 로고
    • A review of theoretical aspects in the estimation of breeding values for multi-trait selection
    • Thompson, R. and Meyer, K. (1986). A review of theoretical aspects in the estimation of breeding values for multi-trait selection. Livestock Production Science 15, 299-313.
    • (1986) Livestock Production Science , vol.15 , pp. 299-313
    • Thompson, R.1    Meyer, K.2
  • 50
    • 0028117976 scopus 로고
    • Bayesian-analysis of mixed linear-models via Gibbs sampling with an application to litter size in Iberian pigs
    • Wang, C. S., Rutledge, J. J. and Gianola, D. (1994). Bayesian-analysis of mixed linear-models via Gibbs sampling with an application to litter size in Iberian pigs. Genetics Selection Evolution 26, 91-115.
    • (1994) Genetics Selection Evolution , vol.26 , pp. 91-115
    • Wang, C.S.1    Rutledge, J.J.2    Gianola, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.