메뉴 건너뛰기




Volumn 35, Issue 1, 2010, Pages 1-20

Hierarchical associative classifier (HAC) for malware detection from the large and imbalanced gray list

Author keywords

Class imbalance; Gray list; Hierarchical Associative Classifier (HAC); Malware detection

Indexed keywords

ANTI VIRUS; ANTIVIRUS SOFTWARES; ASSOCIATIVE CLASSIFICATION; ASSOCIATIVE CLASSIFIERS; BACKDOORS; CLASS FILE; CLASS IMBALANCE; COMPUTER USERS; DATA COLLECTION; HIGH EFFICIENCY; HIGH PRECISION; IMBALANCED CLASS; INCLUDING RULE; INTERPRETABILITY; LARGE DATA; MALWARE DETECTION; MALWARES; OVERFITTING; PORTABLE EXECUTABLE FILES; POST-PROCESSING TECHNIQUES; PRECISION AND RECALL; RESEARCH EFFORTS; SAMPLING STRATEGIES; SCANNING TOOL; SECOND LEVEL; SECURITY THREATS; SOFTWARE PROGRAM; SPY-WARE; TRAINING DATA; TROJANS;

EID: 77954348690     PISSN: 09259902     EISSN: 15737675     Source Type: Journal    
DOI: 10.1007/s10844-009-0086-7     Document Type: Article
Times cited : (39)

References (39)
  • 1
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • Agrawal, R., & Imielinski, T. (1993). Mining association rules between sets of items in large databases. In Proceedings of SIGMOD.
    • (1993) Proceedings of SIGMOD
    • Agrawal, R.1    Imielinski, T.2
  • 3
    • 0032680184 scopus 로고    scopus 로고
    • Constraint-based rule mining in large, dense databases
    • Bayardo, R., Agrawal, R., & Gunopulos, D. (1999). Constraint-based rule mining in large, dense databases. In ICDE-99.
    • (1999) ICDE-99
    • Bayardo, R.1    Agrawal, R.2    Gunopulos, D.3
  • 4
    • 33748932391 scopus 로고    scopus 로고
    • Dynamic analysis of malicious code
    • DOI 10.1007/s11416-006-0012-2, EICAR 2006 Special issue
    • U Bayer A Moser C Kruegel E Kirda 2006 Dynamic analysis of malicious code Journal in Computer Virology 2 67 77 10.1007/s11416-006-0012-2 (Pubitemid 44432022)
    • (2006) Journal in Computer Virology , vol.2 , Issue.1 , pp. 67-77
    • Bayer, U.1    Moser, A.2    Kruegel, C.3    Kirda, E.4
  • 9
    • 0039253846 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation
    • Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate generation. In Proceedings of SIGMOD (pp. 1-12).
    • (2000) Proceedings of SIGMOD , pp. 1-12
    • Han, J.1    Pei, J.2    Yin, Y.3
  • 10
    • 0036565018 scopus 로고    scopus 로고
    • Competitive learning with floating-gate circuits
    • DOI 10.1109/TNN.2002.1000139, PII S104592270204434X
    • C Hsu C Lin 2002 A comparison of methods for multiclass support vector machines IEEE Transactions on Neural Networks 13 415 425 10.1109/TNN.2002. 1000139 (Pubitemid 34669660)
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.3 , pp. 732-744
    • Hsu, D.1    Figueroa, M.2    Diorio, C.3
  • 12
  • 13
    • 0038969996 scopus 로고    scopus 로고
    • Mining needles in a haystack: Classifying rare classes via two-phase rule induction
    • Joshi, M., Agarwal, R., & Kumar, V. (2001). Mining needles in a haystack: Classifying rare classes via two-phase rule induction. In SIGMOD 01 conference on management of data (pp. 91-102).
    • (2001) SIGMOD 01 Conference on Management of Data , pp. 91-102
    • Joshi, M.1    Agarwal, R.2    Kumar, V.3
  • 14
    • 77954348890 scopus 로고    scopus 로고
    • Piecewise linear separanility using support vector machines
    • Kamei, R., & Ralescu, A. (2003). Piecewise linear separanility using support vector machines. In Proc. of the MAICS conference (pp. 52C53).
    • (2003) Proc. of the MAICS Conference
    • Kamei, R.1    Ralescu, A.2
  • 16
    • 84943680959 scopus 로고
    • Computers and epidemiology
    • 10.1109/6.275061
    • J. Kephart S. White D. Chess 1993 Computers and epidemiology IEEE Spectrum 30 20 26 10.1109/6.275061
    • (1993) IEEE Spectrum , vol.30 , pp. 20-26
    • Kephart, J.1    White, S.2    Chess, D.3
  • 17
    • 12244279567 scopus 로고    scopus 로고
    • Learning to detect malicious executables in the wild
    • Kolter, J., & Maloof, M. (2004). Learning to detect malicious executables in the wild. In Proceedings of KDD'04.
    • (2004) Proceedings of KDD'04
    • Kolter, J.1    Maloof, M.2
  • 18
    • 85061066913 scopus 로고
    • Selection of relevant features in machine learning
    • Langley, P. (1994). Selection of relevant features in machine learning. In Proceedings of AAAI fall symp.
    • (1994) Proceedings of AAAI Fall Symp
    • Langley, P.1
  • 21
    • 0142191637 scopus 로고    scopus 로고
    • Pruning and summarizing the discovered associations
    • Liu, B., Hsu, W., & Ma, Y. (1999). Pruning and summarizing the discovered associations. In KDD-99.
    • (1999) KDD-99
    • Liu, B.1    Hsu, W.2    Ma, Y.3
  • 22
    • 0002356150 scopus 로고    scopus 로고
    • SLIQ: A fast scalable classifier for data mining
    • Mahta, M., Agrawal, R., & Rissanen, J. (1996). SLIQ: A fast scalable classifier for data mining. In EDBT-96.
    • (1996) EDBT-96
    • Mahta, M.1    Agrawal, R.2    Rissanen, J.3
  • 23
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
    • DOI 10.1109/TPAMI.2005.159
    • H Peng F Long C Ding 2005 Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy IEEE Transactions on Pattern Analysis and Machine Intelligence 27 1226 1238 10.1109/TPAMI.2005.159 (Pubitemid 41245053)
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 24
    • 0034838197 scopus 로고    scopus 로고
    • Data mining methods for detection of new malicious executables
    • Security and privacy, 2001
    • Schultz, M., Eskin, E., & Zadok, E. (2001). Data mining methods for detection of new malicious executables. In Security and privacy, 2001. Proceedings. 2001 IEEE symposium on 14-16 May (pp. 38-49).
    • (2001) Proceedings. 2001 IEEE Symposium on 14-16 May , pp. 38-49
    • Schultz, M.1    Eskin, E.2    Zadok, E.3
  • 27
    • 0030216542 scopus 로고    scopus 로고
    • Neural networks for computer virus recognition
    • 10.1109/64.511768
    • G Tesauro J Kephart G Sorkin 1996 Neural networks for computer virus recognition IEEE Expert 11 5 6 10.1109/64.511768
    • (1996) IEEE Expert , vol.11 , pp. 5-6
    • Tesauro, G.1    Kephart, J.2    Sorkin, G.3
  • 28
    • 34249687044 scopus 로고    scopus 로고
    • A review of associative classification mining
    • DOI 10.1017/S0269888907001026, PII S0269888907001026
    • F Thabtah 2007 A review of associative classification mining The Knowledge Engineering Review 22 1 37C65 10.1017/S0269888907001026 (Pubitemid 46825798)
    • (2007) Knowledge Engineering Review , vol.22 , Issue.1 , pp. 37-65
    • Thabtah, F.1
  • 35
    • 20844458491 scopus 로고    scopus 로고
    • Mining with rarity: A unifying framework
    • Weiss, G. (2004). Mining with rarity: A unifying framework. In SIGKDD Explorations (Vol. 6, No. 1, pp. 7-19).
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 7-19
    • Weiss, G.1
  • 36
    • 1442275185 scopus 로고    scopus 로고
    • Learning when training data are costly: The effect of class distribution on tree induction
    • 1046.68094
    • G Weiss F Provost 2003 Learning when training data are costly: The effect of class distribution on tree induction Journal of Artificial Intelligence Research 19 315 354 1046.68094
    • (2003) Journal of Artificial Intelligence Research , vol.19 , pp. 315-354
    • Weiss, G.1    Provost, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.