메뉴 건너뛰기




Volumn 6, Issue 1, 2010, Pages 47-53

Affinity propagation clustering with geodesic distances

Author keywords

Affinity propagation; Geodesic distance; Kernel method

Indexed keywords

AFFINITY PROPAGATION; CLUSTERING METHODS; DATA POINTS; DATA SETS; FEATURE SPACE; GEODESIC DISTANCES; INHERENT STRUCTURES; KERNEL METHODS; MAPPING DATA; REAL-WORLD DATASETS;

EID: 77954332208     PISSN: 15539105     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (11)

References (17)
  • 1
    • 0000825481 scopus 로고
    • Statistical method for evaluating systematic relationships,
    • University of Kansas science bulletin
    • Sokal, R. R. and Michener, C. D., Statistical method for evaluating systematic relationships, University of Kansas science bulletin, 38:1409-1438, 1958
    • (1958) , vol.38 , pp. 1409-1438
    • Sokal, R.R.1    Michener, C.D.2
  • 2
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • Berkeley, University of California Press
    • MacQueen J. B., Some Methods for classification and Analysis of Multivariate Observations, Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, 1:281-297, 1967
    • (1967) Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability , vol.1 , pp. 281-297
    • MacQueen, J.B.1
  • 3
    • 34548025132 scopus 로고    scopus 로고
    • A survey of kernel and spectral methods for clustering
    • January
    • Filippone M., Camastra F., Masulli F. and Rovetta S., A survey of kernel and spectral methods for clustering, Pattern Recognition, v.41 n.1, p.176-190, January, 2008
    • (2008) Pattern Recognition , vol.41 , Issue.1 , pp. 176-190
    • Filippone, M.1    Camastra, F.2    Masulli, F.3    Rovetta, S.4
  • 8
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S. and Saul L., Nonlinear dimensionality reduction by locally linear embedding, In Science, 2000
    • (2000) Science
    • Roweis, S.1    Saul, L.2
  • 9
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin M. and Niyogi P., Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6), 2003
    • (2003) Neural Computation , vol.15 , Issue.6
    • Belkin, M.1    Niyogi, P.2
  • 10
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum J. B., de Silva V. and J. C. Langford, A global geometric framework for nonlinear dimensionality reduction. Science, 290, 2000
    • (2000) Science , pp. 290
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 11
    • 77954346599 scopus 로고    scopus 로고
    • Yang L., http://www.cs.cmu.edu/~liuy/dist_overview.pdf
    • Yang, L.1
  • 12
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • Frey B. J. and Dueck D., Clustering by passing messages between data points. Science 315, 972-976, 2007
    • (2007) Science , vol.315 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 13
    • 12244258501 scopus 로고    scopus 로고
    • Mining scale-free networks using geodesic clustering
    • August 22-25, Seattle, Washington, USA
    • Wu A.Y., Garland M. and Han J., Mining scale-free networks using geodesic clustering, KDD'04, August 22-25, 2004, Seattle, Washington, USA
    • (2004) KDD'04
    • Wu, A.Y.1    Garland, M.2    Han, J.3
  • 14
    • 58149265326 scopus 로고    scopus 로고
    • Geodesic distance based fuzzy clustering
    • Feil B. and Abonyi J., Geodesic distance based fuzzy clustering, Advances in Soft Computing, 39:50-59, 2007
    • (2007) Advances in Soft Computing , vol.39 , pp. 50-59
    • Feil, B.1    Abonyi, J.2
  • 16
    • 77954324072 scopus 로고    scopus 로고
    • http://www.ics.uci.edu/~mlearn/MLRepository.html


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.