-
1
-
-
0033689855
-
-
10.1016/S0378-4371(00)00195-3
-
H. E. Stanley, L. A. N. Amaral, P. Gopikrishnan, P. Ch. Ivanov, T. H. Keitt, and V. Plerou, Physica A 281, 60 (2000). 10.1016/S0378-4371(00)00195-3
-
(2000)
Physica A
, vol.281
, pp. 60
-
-
Stanley, H.E.1
Amaral, L.A.N.2
Gopikrishnan, P.3
Ch. Ivanov, P.4
Keitt, T.H.5
Plerou, V.6
-
2
-
-
0033100060
-
-
10.1103/RevModPhys.71.S358
-
H. E. Stanley, Rev. Mod. Phys. 71, S358 (1999). 10.1103/RevModPhys.71. S358
-
(1999)
Rev. Mod. Phys.
, vol.71
, pp. 358
-
-
Stanley, H.E.1
-
3
-
-
24744469980
-
-
10.1080/00107510500052444
-
M. E. J. Newman, Contemp. Phys. 46, 323 (2005). 10.1080/00107510500052444
-
(2005)
Contemp. Phys.
, vol.46
, pp. 323
-
-
Newman, M.E.J.1
-
7
-
-
0013034368
-
-
10.1162/003355399556133
-
X. Gabaix, Q. J. Econ. 114, 739 (1999). 10.1162/003355399556133
-
(1999)
Q. J. Econ.
, vol.114
, pp. 739
-
-
Gabaix, X.1
-
9
-
-
77954333845
-
-
For a very complete collection of the works concerning the topic we refer the reader to:
-
For a very complete collection of the works concerning the topic we refer the reader to: http://www.nslij-genetics.org/wli/zipf/
-
-
-
-
10
-
-
0000570212
-
-
10.1093/biomet/42.3-4.425
-
H. A. Simon, Biometrika 42, 425 (1955). 10.1093/biomet/42.3-4.425
-
(1955)
Biometrika
, vol.42
, pp. 425
-
-
Simon, H.A.1
-
12
-
-
0030525326
-
-
10.1006/jjie.1996.0023
-
P. Krugman, J. Jpn. Int. Econ. 10, 399 (1996). 10.1006/jjie.1996.0023
-
(1996)
J. Jpn. Int. Econ.
, vol.10
, pp. 399
-
-
Krugman, P.1
-
13
-
-
0034319321
-
-
10.1016/S0378-4371(00)00464-7
-
A. Blank and S. Solomon, Physica A 287, 279 (2000). 10.1016/S0378- 4371(00)00464-7
-
(2000)
Physica A
, vol.287
, pp. 279
-
-
Blank, A.1
Solomon, S.2
-
15
-
-
0035823152
-
-
10.1126/science.1062081
-
R. L. Axtell, Science 293, 1818 (2001). 10.1126/science.1062081
-
(2001)
Science
, vol.293
, pp. 1818
-
-
Axtell, R.L.1
-
16
-
-
3042831202
-
-
10.1038/nature01624
-
X. Gabaix, P. Gopikrishnan, V. Plerou, and E. H. Stanley, Nature (London) 423, 267 (2003). 10.1038/nature01624
-
(2003)
Nature (London)
, vol.423
, pp. 267
-
-
Gabaix, X.1
Gopikrishnan, P.2
Plerou, V.3
Stanley, E.H.4
-
19
-
-
33748756571
-
-
10.1103/PhysRevE.66.067103
-
W. J. Reed and B. D. Hughes, Phys. Rev. E 66, 067103 (2002). 10.1103/PhysRevE.66.067103
-
(2002)
Phys. Rev. e
, vol.66
, pp. 067103
-
-
Reed, W.J.1
Hughes, B.D.2
-
20
-
-
0035369516
-
-
10.1016/S0378-4371(01)00046-2
-
D. H. Zanette and S. C. Manrubia, Physica A 295, 1 (2001). 10.1016/S0378-4371(01)00046-2
-
(2001)
Physica A
, vol.295
, pp. 1
-
-
Zanette, D.H.1
Manrubia, S.C.2
-
24
-
-
77954345038
-
-
in edited by V. der Woude et al. (Clarendon, Oxford
-
G. Rozman, in East Asian Urbanization in the Nineteenth Century: Comparisons with Europe, edited by, V. der Woude,, (Clarendon, Oxford, 1990), pp. 61-63.
-
(1990)
East Asian Urbanization in the Nineteenth Century: Comparisons with Europe
, pp. 61-63
-
-
Rozman, G.1
-
33
-
-
0001310327
-
-
10.1016/0021-9797(82)90382-4
-
W. H. White, J. Colloid Interface Sci. 87, 204 (1982). 10.1016/0021-9797(82)90382-4
-
(1982)
J. Colloid Interface Sci.
, vol.87
, pp. 204
-
-
White, W.H.1
-
34
-
-
20144381566
-
-
10.1103/PhysRevA.40.3836
-
F. Family and P. Meakin, Phys. Rev. A 40, 3836 (1989). 10.1103/PhysRevA.40.3836
-
(1989)
Phys. Rev. A
, vol.40
, pp. 3836
-
-
Family, F.1
Meakin, P.2
-
38
-
-
0026953429
-
-
10.1109/18.165464
-
W. Li, IEEE Trans. Inf. Theory 38, 1842 (1992). 10.1109/18.165464
-
(1992)
IEEE Trans. Inf. Theory
, vol.38
, pp. 1842
-
-
Li, W.1
-
41
-
-
0000405905
-
-
10.1103/PhysRevLett.80.1385
-
Luis A. Nunes Amaral, S. V. Buldyrev, S. Havlin, M. A. Salinger, and H. E. Stanley, Phys. Rev. Lett. 80, 1385 (1998). 10.1103/PhysRevLett.80.1385
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 1385
-
-
Amaral Nunes, L.A.1
Buldyrev, S.V.2
Havlin, S.3
Salinger, M.A.4
Stanley, H.E.5
-
42
-
-
4544279425
-
-
10.1016/S0019-9958(64)90223-2
-
R. Solomonoff, Inform and Control 7, 1 (1964). 10.1016/S0019-9958(64) 90223-2
-
(1964)
Inform and Control
, vol.7
, pp. 1
-
-
Solomonoff, R.1
-
44
-
-
84918358658
-
-
10.1145/321356.321363
-
G. J. Chaitin, J. ACM 13, 547 (1966). 10.1145/321356.321363
-
(1966)
J. ACM
, vol.13
, pp. 547
-
-
Chaitin, G.J.1
-
46
-
-
0004704295
-
-
10.1103/PhysRevE.54.220
-
R. Perline, Phys. Rev. E 54, 220 (1996). 10.1103/PhysRevE.54.220
-
(1996)
Phys. Rev. e
, vol.54
, pp. 220
-
-
Perline, R.1
-
49
-
-
0016532771
-
-
10.1145/321892.321894
-
G. J. Chaitin, J. ACM 22, 329 (1975). 10.1145/321892.321894
-
(1975)
J. ACM
, vol.22
, pp. 329
-
-
Chaitin, G.J.1
-
50
-
-
0000599167
-
-
10.1088/0034-4885/49/10/002
-
J. S. Nicolis, Rep. Prog. Phys. 49, 1109 (1986). 10.1088/0034-4885/49/10/ 002
-
(1986)
Rep. Prog. Phys.
, vol.49
, pp. 1109
-
-
Nicolis, J.S.1
-
51
-
-
77954347041
-
-
10.1209/0295-5075/14/3/001
-
W. Ebeling and G. Nicolis, EPL 14, 191 (1991). 10.1209/0295-5075/14/3/001
-
(1991)
EPL
, vol.14
, pp. 191
-
-
Ebeling, W.1
Nicolis, G.2
-
52
-
-
0006382543
-
-
10.1016/0378-4371(93)90386-I
-
W. Ebeling, Physica A 194, 563 (1993). 10.1016/0378-4371(93)90386-I
-
(1993)
Physica A
, vol.194
, pp. 563
-
-
Ebeling, W.1
-
54
-
-
0039691110
-
-
10.1038/341119a0
-
W. H. Zurek, Nature (London) 341, 119 (1989). 10.1038/341119a0
-
(1989)
Nature (London)
, vol.341
, pp. 119
-
-
Zurek, W.H.1
-
55
-
-
0002497270
-
-
10.1103/PhysRevE.54.R39
-
T. G. Dewey, Phys. Rev. E 54, R39 (1996). 10.1103/PhysRevE.54.R39
-
(1996)
Phys. Rev. e
, vol.54
, pp. 39
-
-
Dewey, T.G.1
-
56
-
-
85044003922
-
-
in edited by P. Adriaans and J. van Benthem Elsevier, New York
-
P. D. Grünwald and P. M. Vitányi, in Handbook of the Philosophy of Science, Volume 8: Philosophy of Information, edited by, P. Adriaans, and, J. van Benthem, (Elsevier, New York, 2008), pp. 289-325.
-
(2008)
Handbook of the Philosophy of Science, Volume 8: Philosophy of Information
, pp. 289-325
-
-
Grünwald, P.D.1
Vitányi, P.M.2
-
60
-
-
11944266539
-
-
10.1103/PhysRev.106.620
-
E. T. Jaynes, Phys. Rev. 106, 620 (1957). 10.1103/PhysRev.106.620
-
(1957)
Phys. Rev.
, vol.106
, pp. 620
-
-
Jaynes, E.T.1
-
64
-
-
71949103034
-
-
10.1016/j.physleta.2009.10.027
-
A. Hernando, D. Puigdomènech, D. Villuendas, C. Vesperinas, and A. Plastino, Phys. Lett. A 374, 18 (2009). 10.1016/j.physleta.2009.10.027
-
(2009)
Phys. Lett. A
, vol.374
, pp. 18
-
-
Hernando, A.1
Puigdomènech, D.2
Villuendas, D.3
Vesperinas, C.4
Plastino, A.5
-
65
-
-
0004245694
-
-
Applied Mathematics Series, edited by M. Abramowitz and I. Stegun (U.S. Government Printing office, Washington, D.C.
-
Handbook of Mathematical Functions, NBS, Applied Mathematics Series, edited by, M. Abramowitz, and, I. Stegun, (U.S. Government Printing office, Washington, D.C., 1965), Vol. 55.
-
(1965)
Handbook of Mathematical Functions, NBS
, vol.55
-
-
-
67
-
-
77954339176
-
-
+δ ).
-
+ δ).
-
-
-
-
68
-
-
77954342613
-
-
The reader could object that this section is unnecessary, since the axiomatic derivation of the uncertainty function (which we call entropy) assumes that the entropy increases with the size of the system. However, the explicit statement of this axiom corresponds to the special case of uniform probabilities. Specifically, the axiom states that, if we have two systems A,B such that A contains n states a1 ,..., an and B contains n+1 states, b1 ,..., bn+1, then, if (i≤n ) p ( ai ) =1/n and (i≤n+1 ) p ( bi ) =1/ (n+1 ) H (A)
-
The reader could object that this section is unnecessary, since the axiomatic derivation of the uncertainty function (which we call entropy) assumes that the entropy increases with the size of the system. However, the explicit statement of this axiom corresponds to the special case of uniform probabilities. Specifically, the axiom states that, if we have two systems A, B such that A contains n states a 1,..., a n and B contains n + 1 states, b 1,..., b n + 1, then, if ( i ≤ n) p (a i) = 1 / n and ( i ≤ n + 1) p (b i) = 1 / (n + 1) H (A) < H (B). Thus, if we are not dealing with this special case, we need to explicitly demonstrate that it holds for our purposes.
-
-
-
-
69
-
-
77954331861
-
-
This derivation is equivalent to the one found in, Theorem 8.2. In this theorem, the authors demonstrate that every infinite distribution with infinite entropy is hyperbolic, which implies that the distribution is not dominated by a power law with an exponent higher than 1.
-
This derivation is equivalent to the one found in, Theorem 8.2. In this theorem, the authors demonstrate that every infinite distribution with infinite entropy is hyperbolic, which implies that the distribution is not dominated by a power law with an exponent higher than 1.
-
-
-
|