-
6
-
-
0000200444
-
-
10.1007/s100510070146
-
O. Chanal, Eur. Phys. J. B 17, 309 (2000). 10.1007/s100510070146
-
(2000)
Eur. Phys. J. B
, vol.17
, pp. 309
-
-
Chanal, O.1
-
7
-
-
33646859003
-
-
10.1103/PhysRevE.73.055303;
-
G.-W. He and J.-B. Zhang, Phys. Rev. E 73, 055303 (R) (2006) 10.1103/PhysRevE.73.055303
-
(2006)
Phys. Rev. e
, vol.73
, pp. 055303
-
-
He, G.-W.1
Zhang, J.-B.2
-
8
-
-
65649132385
-
-
10.1103/PhysRevE.79.046316
-
X. Zhao and G.-W. He, Phys. Rev. E 79, 046316 (2009). 10.1103/PhysRevE.79.046316
-
(2009)
Phys. Rev. e
, vol.79
, pp. 046316
-
-
Zhao, X.1
He, G.-W.2
-
9
-
-
0001330827
-
-
10.1063/1.2746572
-
R. H. Kraichnan, Phys. Fluids 7, 1723 (1964). 10.1063/1.2746572
-
(1964)
Phys. Fluids
, vol.7
, pp. 1723
-
-
Kraichnan, R.H.1
-
10
-
-
77954229951
-
-
The Rayleigh number is defined as Ra=αgΔT H3 / (νκ ), where g is the gravitational acceleration, ΔT is the temperature difference across the fluid layer of thickness H, and α, ν, and κ are, respectively, the thermal expansion coefficient, the kinematic viscosity, and the thermal diffusivity of the fluid. The Prandtl number is defined as Pr=ν/κ.
-
The Rayleigh number is defined as Ra = α g Δ T H 3 / (ν κ), where g is the gravitational acceleration, Δ T is the temperature difference across the fluid layer of thickness H, and α, ν, and κ are, respectively, the thermal expansion coefficient, the kinematic viscosity, and the thermal diffusivity of the fluid. The Prandtl number is defined as Pr = ν / κ.
-
-
-
-
11
-
-
61549139045
-
-
10.1103/PhysRevE.79.026306
-
X.-Z. He and P. Tong, Phys. Rev. E 79, 026306 (2009). 10.1103/PhysRevE.79.026306
-
(2009)
Phys. Rev. e
, vol.79
, pp. 026306
-
-
He, X.-Z.1
Tong, P.2
-
12
-
-
0035443692
-
-
10.1103/PhysRevE.64.036304
-
X.-L. Qiu and P. Tong, Phys. Rev. E 64, 036304 (2001). 10.1103/PhysRevE.64.036304
-
(2001)
Phys. Rev. e
, vol.64
, pp. 036304
-
-
Qiu, X.-L.1
Tong, P.2
-
14
-
-
33749370409
-
-
10.1103/PhysRevLett.97.144504
-
C. Sun, Q. Zhou, and K. Q. Xia, Phys. Rev. Lett. 97, 144504 (2006). 10.1103/PhysRevLett.97.144504
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 144504
-
-
Sun, C.1
Zhou, Q.2
Xia, K.Q.3
-
17
-
-
0024698819
-
-
10.1017/S0022112089001643
-
B. Castaing, J. Fluid Mech. 204, 1 (1989). 10.1017/S0022112089001643
-
(1989)
J. Fluid Mech.
, vol.204
, pp. 1
-
-
Castaing, B.1
-
19
-
-
77954239810
-
-
10.1209/0295-5075/22/1/005
-
F. Chillá, EPL 22, 23 (1993). 10.1209/0295-5075/22/1/005
-
(1993)
EPL
, vol.22
, pp. 23
-
-
Chillá, F.1
-
20
-
-
72049116001
-
-
10.1146/annurev.fluid.010908.165152
-
D. Lohse and K.-Q. Xia, Annu. Rev. Fluid Mech. 42, 335 (2010). 10.1146/annurev.fluid.010908.165152
-
(2010)
Annu. Rev. Fluid Mech.
, vol.42
, pp. 335
-
-
Lohse, D.1
Xia, K.-Q.2
-
21
-
-
4243254563
-
-
10.1146/annurev.fl.26.010194.001033
-
E. Siggia, Annu. Rev. Fluid Mech. 26, 137 (1994). 10.1146/annurev.fl.26. 010194.001033
-
(1994)
Annu. Rev. Fluid Mech.
, vol.26
, pp. 137
-
-
Siggia, E.1
-
22
-
-
4244113036
-
-
10.1103/PhysRevLett.87.094501
-
X.-L. Qiu and P. Tong, Phys. Rev. Lett. 87, 094501 (2001). 10.1103/PhysRevLett.87.094501
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 094501
-
-
Qiu, X.-L.1
Tong, P.2
-
23
-
-
20444430499
-
-
10.1143/JPSJ.74.1464
-
T. Ishihara, J. Phys. Soc. Jpn. 74, 1464 (2005). 10.1143/JPSJ.74.1464
-
(2005)
J. Phys. Soc. Jpn.
, vol.74
, pp. 1464
-
-
Ishihara, T.1
|