메뉴 건너뛰기




Volumn , Issue , 2007, Pages 3202-3205

A classification-based linear projection of labeled hyperspectral data

Author keywords

Classification; Hyperspectral images; Linear projection; NCA; Remote sensing

Indexed keywords

HYPERSPECTRAL DATA CLASSIFICATION; LINEAR PROJECTION; LINEAR SUBSPACE METHOD; NEIGHBOURHOOD COMPONENT ANALYSIS (NCA);

EID: 77954229259     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IGARSS.2007.4423526     Document Type: Conference Paper
Times cited : (3)

References (19)
  • 1
    • 39049165401 scopus 로고    scopus 로고
    • Aviris nw indianas indian pines 1992 data set [online]. Available:ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/92AV3C(original files)and ftp://ftp.ecn.purdue.edu/biehl/PC_MultiSpec /ThyFiles.zip (ground truth).
    • Aviris nw indianas indian pines 1992 data set [online]. Available:ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/92AV3C(original files)and ftp://ftp.ecn.purdue.edu/biehl/PC_MultiSpec /ThyFiles.zip (ground truth).
  • 2
    • 39049173684 scopus 로고    scopus 로고
    • Available
    • Spcim web-site. Available:http://www.specim.fi/products-aisa-eagle.html.
    • Spcim web-site
  • 4
    • 0033099197 scopus 로고    scopus 로고
    • A technique for the selection of kernel-function parameters in RBF neural networks for classification of remote-sensing images
    • L. Bruzzone and D. Fernndez-Prieto. A technique for the selection of kernel-function parameters in RBF neural networks for classification of remote-sensing images. IEEE Trans. Geosci. Remote Sens., 37(2):1179-1184, 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens , vol.37 , Issue.2 , pp. 1179-1184
    • Bruzzone, L.1    Fernndez-Prieto, D.2
  • 5
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral images classification
    • G. Camps-Valls and L. Bruzzone. Kernel-based methods for hyperspectral images classification. IEEE Trans. Geosci. Remote Sens., 43(6):1351-1362, 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 8
    • 0033311252 scopus 로고    scopus 로고
    • Interference and noise adjusted principal components analysis
    • C.-I Chang and Q. Du. Interference and noise adjusted principal components analysis. IEEE Trans. Geosci. Remote Sensing, 37:2387-2396, 1999.
    • (1999) IEEE Trans. Geosci. Remote Sensing , vol.37 , pp. 2387-2396
    • Chang, C.-I.1    Du, Q.2
  • 9
    • 0002340076 scopus 로고
    • Evaluation of the required sample size in some supervised pattern recognition techniques
    • M. P. Derde and D. L. Massart. Evaluation of the required sample size in some supervised pattern recognition techniques. Analytica Chimica Acta, 223(1): 19-44, 1989.
    • (1989) Analytica Chimica Acta , vol.223 , Issue.1 , pp. 19-44
    • Derde, M.P.1    Massart, D.L.2
  • 10
    • 1242286418 scopus 로고    scopus 로고
    • Toward an optimal supervised classifier for the analysis of hyperspectral data
    • M. M. Dundar and D. A. Landgrebe. Toward an optimal supervised classifier for the analysis of hyperspectral data. IEEE Trans. Geosci. Remote Sens., 42(1):271-277, 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.1 , pp. 271-277
    • Dundar, M.M.1    Landgrebe, D.A.2
  • 11
    • 1242308803 scopus 로고    scopus 로고
    • A cost-effective semisupervised classifier approach with kernels
    • M. Murat Dundar and A. Landgrebe. A cost-effective semisupervised classifier approach with kernels. IEEE Trans. Geosci. Remote Sens., 42(8):1778-1796, 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.8 , pp. 1778-1796
    • Murat Dundar, M.1    Landgrebe, A.2
  • 12
    • 0023854011 scopus 로고    scopus 로고
    • A transformation for ordering multispectral data in terms of image quality with implications for noise removal
    • A. A. Green et al. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sensing, 26:65-74, 1998.
    • (1998) IEEE Trans. Geosci. Remote Sensing , vol.26 , pp. 65-74
    • Green, A.A.1
  • 13
    • 0032157733 scopus 로고    scopus 로고
    • Determining forest species composition using high spectral resolution remote sensing data
    • M. E. Martin et al. Determining forest species composition using high spectral resolution remote sensing data. Remote Sens. Environ., 65:249-254, 1998.
    • (1998) Remote Sens. Environ , vol.65 , pp. 249-254
    • Martin, M.E.1
  • 15
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognition
    • G. F. Hughes. On the mean accuracy of statistical pattern recognition. IEEE Trans. Inform. Theory, IT-14:55-63, 1968.
    • (1968) IEEE Trans. Inform. Theory , vol.IT-14 , pp. 55-63
    • Hughes, G.F.1
  • 16
    • 0025430387 scopus 로고
    • Enhancement of high-spectral resolution remote-sensing data by a noise-adjusted principal components transform
    • J. B. Lee, A. S.Woodyatt, and M. Berman. Enhancement of high-spectral resolution remote-sensing data by a noise-adjusted principal components transform. IEEE Trans. Geosci. Remote Sensing, 28:295-304, 1990.
    • (1990) IEEE Trans. Geosci. Remote Sensing , vol.28 , pp. 295-304
    • Lee, J.B.1    Woodyatt, A.S.2    Berman, M.3
  • 17
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • F. Melgani and L. Bruzzone. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens., 42(8):1778-1796, 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.8 , pp. 1778-1796
    • Melgani, F.1    Bruzzone, L.2
  • 18
    • 27844552833 scopus 로고    scopus 로고
    • Supervised image classification by contextual adaboost based on posteriors in neighborhoods
    • R. Nishii and S. Eguchi. Supervised image classification by contextual adaboost based on posteriors in neighborhoods. IEEE Trans. on Geosci. and Remote Sens., 43:2547-2554, 2005.
    • (2005) IEEE Trans. on Geosci. and Remote Sens , vol.43 , pp. 2547-2554
    • Nishii, R.1    Eguchi, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.