-
1
-
-
39049165401
-
-
Aviris nw indianas indian pines 1992 data set [online]. Available:ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/92AV3C(original files)and ftp://ftp.ecn.purdue.edu/biehl/PC_MultiSpec /ThyFiles.zip (ground truth).
-
Aviris nw indianas indian pines 1992 data set [online]. Available:ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/92AV3C(original files)and ftp://ftp.ecn.purdue.edu/biehl/PC_MultiSpec /ThyFiles.zip (ground truth).
-
-
-
-
2
-
-
39049173684
-
-
Available
-
Spcim web-site. Available:http://www.specim.fi/products-aisa-eagle.html.
-
Spcim web-site
-
-
-
3
-
-
21844457672
-
Learning a mahalanobis distance from equivalence constarints
-
A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall. Learning a mahalanobis distance from equivalence constarints. Journal of Machine Learning Research, pages 937-965, 2005.
-
(2005)
Journal of Machine Learning Research
, pp. 937-965
-
-
Bar-Hillel, A.1
Hertz, T.2
Shental, N.3
Weinshall, D.4
-
4
-
-
0033099197
-
A technique for the selection of kernel-function parameters in RBF neural networks for classification of remote-sensing images
-
L. Bruzzone and D. Fernndez-Prieto. A technique for the selection of kernel-function parameters in RBF neural networks for classification of remote-sensing images. IEEE Trans. Geosci. Remote Sens., 37(2):1179-1184, 1999.
-
(1999)
IEEE Trans. Geosci. Remote Sens
, vol.37
, Issue.2
, pp. 1179-1184
-
-
Bruzzone, L.1
Fernndez-Prieto, D.2
-
5
-
-
20444432773
-
Kernel-based methods for hyperspectral images classification
-
G. Camps-Valls and L. Bruzzone. Kernel-based methods for hyperspectral images classification. IEEE Trans. Geosci. Remote Sens., 43(6):1351-1362, 2005.
-
(2005)
IEEE Trans. Geosci. Remote Sens
, vol.43
, Issue.6
, pp. 1351-1362
-
-
Camps-Valls, G.1
Bruzzone, L.2
-
6
-
-
31144448472
-
Composite kernels for hyperspectral image classification
-
G. Camps-Valls, L. Gomez-Chova, J. Munoz-Mari, J. Vila-Frances, and J. Calpe-Maravilla. Composite kernels for hyperspectral image classification. Geosci. and Remote Sens. Letters, IEEE, 3:93-97, 2006.
-
(2006)
Geosci. and Remote Sens. Letters, IEEE
, vol.3
, pp. 93-97
-
-
Camps-Valls, G.1
Gomez-Chova, L.2
Munoz-Mari, J.3
Vila-Frances, J.4
Calpe-Maravilla, J.5
-
8
-
-
0033311252
-
Interference and noise adjusted principal components analysis
-
C.-I Chang and Q. Du. Interference and noise adjusted principal components analysis. IEEE Trans. Geosci. Remote Sensing, 37:2387-2396, 1999.
-
(1999)
IEEE Trans. Geosci. Remote Sensing
, vol.37
, pp. 2387-2396
-
-
Chang, C.-I.1
Du, Q.2
-
9
-
-
0002340076
-
Evaluation of the required sample size in some supervised pattern recognition techniques
-
M. P. Derde and D. L. Massart. Evaluation of the required sample size in some supervised pattern recognition techniques. Analytica Chimica Acta, 223(1): 19-44, 1989.
-
(1989)
Analytica Chimica Acta
, vol.223
, Issue.1
, pp. 19-44
-
-
Derde, M.P.1
Massart, D.L.2
-
10
-
-
1242286418
-
Toward an optimal supervised classifier for the analysis of hyperspectral data
-
M. M. Dundar and D. A. Landgrebe. Toward an optimal supervised classifier for the analysis of hyperspectral data. IEEE Trans. Geosci. Remote Sens., 42(1):271-277, 2004.
-
(2004)
IEEE Trans. Geosci. Remote Sens
, vol.42
, Issue.1
, pp. 271-277
-
-
Dundar, M.M.1
Landgrebe, D.A.2
-
11
-
-
1242308803
-
A cost-effective semisupervised classifier approach with kernels
-
M. Murat Dundar and A. Landgrebe. A cost-effective semisupervised classifier approach with kernels. IEEE Trans. Geosci. Remote Sens., 42(8):1778-1796, 2004.
-
(2004)
IEEE Trans. Geosci. Remote Sens
, vol.42
, Issue.8
, pp. 1778-1796
-
-
Murat Dundar, M.1
Landgrebe, A.2
-
12
-
-
0023854011
-
A transformation for ordering multispectral data in terms of image quality with implications for noise removal
-
A. A. Green et al. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sensing, 26:65-74, 1998.
-
(1998)
IEEE Trans. Geosci. Remote Sensing
, vol.26
, pp. 65-74
-
-
Green, A.A.1
-
13
-
-
0032157733
-
Determining forest species composition using high spectral resolution remote sensing data
-
M. E. Martin et al. Determining forest species composition using high spectral resolution remote sensing data. Remote Sens. Environ., 65:249-254, 1998.
-
(1998)
Remote Sens. Environ
, vol.65
, pp. 249-254
-
-
Martin, M.E.1
-
15
-
-
77957741951
-
On the mean accuracy of statistical pattern recognition
-
G. F. Hughes. On the mean accuracy of statistical pattern recognition. IEEE Trans. Inform. Theory, IT-14:55-63, 1968.
-
(1968)
IEEE Trans. Inform. Theory
, vol.IT-14
, pp. 55-63
-
-
Hughes, G.F.1
-
16
-
-
0025430387
-
Enhancement of high-spectral resolution remote-sensing data by a noise-adjusted principal components transform
-
J. B. Lee, A. S.Woodyatt, and M. Berman. Enhancement of high-spectral resolution remote-sensing data by a noise-adjusted principal components transform. IEEE Trans. Geosci. Remote Sensing, 28:295-304, 1990.
-
(1990)
IEEE Trans. Geosci. Remote Sensing
, vol.28
, pp. 295-304
-
-
Lee, J.B.1
Woodyatt, A.S.2
Berman, M.3
-
17
-
-
4344614511
-
Classification of hyperspectral remote sensing images with support vector machines
-
F. Melgani and L. Bruzzone. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens., 42(8):1778-1796, 2004.
-
(2004)
IEEE Trans. Geosci. Remote Sens
, vol.42
, Issue.8
, pp. 1778-1796
-
-
Melgani, F.1
Bruzzone, L.2
-
18
-
-
27844552833
-
Supervised image classification by contextual adaboost based on posteriors in neighborhoods
-
R. Nishii and S. Eguchi. Supervised image classification by contextual adaboost based on posteriors in neighborhoods. IEEE Trans. on Geosci. and Remote Sens., 43:2547-2554, 2005.
-
(2005)
IEEE Trans. on Geosci. and Remote Sens
, vol.43
, pp. 2547-2554
-
-
Nishii, R.1
Eguchi, S.2
|