-
1
-
-
0027599793
-
Universal approximation bounds for superposition of a sigmoidal function
-
A. R. Barron, Universal approximation bounds for superposition of a sigmoidal function, IEEE Trans. Inform. Theory 39, 930-945 (1993).
-
(1993)
IEEE Trans. Inform. Theory
, vol.39
, pp. 930-945
-
-
Barron, A.R.1
-
4
-
-
0024874675
-
-
Proceedings of the IJCNN Conference, Washington, D. C., June 18-22, (IEEE Press, New York, 1989), pp. I
-
S.M. Carroll and B.W. Dickinson, Construction of neural nets using the Radon transform, in: Proceedings of the IJCNN Conference, Washington, D. C., June 18-22, 1989 (IEEE Press, New York, 1989), pp. I. 607-611.
-
(1989)
Construction of neural nets using the Radon transform
, pp. 607-611
-
-
Carroll, S.M.1
Dickinson, B.W.2
-
8
-
-
0024866495
-
On the approximate realization of continuous mappings by neural networks
-
K. Funahashi, On the approximate realization of continuous mappings by neural networks, Neural Networks 2, 183-192 (1989).
-
(1989)
Neural Networks
, vol.2
, pp. 183-192
-
-
Funahashi, K.1
-
9
-
-
0003625475
-
-
Academic Press, New York
-
I. M. Gel'fand, M. I. Graev, and N. Ya. Vilenkin, Generalized Functions, Vol. 5 (Academic Press, New York, 1966).
-
(1966)
Generalized Functions
, vol.5
-
-
Gel'fand, I.M.1
Graev, M.I.2
Ya. Vilenkin, N.3
-
10
-
-
0003085388
-
Rates of convergence for radial basis function and neural networks
-
Chapman & Hall, London
-
F. Girosi and G. Anzellotti, Rates of convergence for radial basis function and neural networks, in: Artificial Neural Networks for Speech and Vision (Chapman & Hall, London, 1993), pp. 97-113.
-
(1993)
Artificial Neural Networks for Speech and Vision
, pp. 97-113
-
-
Girosi, F.1
Anzellotti, G.2
-
13
-
-
0025799121
-
Representation of functions by superpositions of a step or sigmoid function and their applications to neural network theory
-
Y. Ito, Representation of functions by superpositions of a step or sigmoid function and their applications to neural network theory, Neural Networks 4, 385-394 (1991).
-
(1991)
Neural Networks
, vol.4
, pp. 385-394
-
-
Ito, Y.1
-
14
-
-
0038009873
-
Best approximation by linear combinations of characteristic functions of half spaces
-
P. C. Kainen, V. Kůrková, and A. Vogt, Best approximation by linear combinations of characteristic functions of half spaces, J. Approx. Theory 122, 151-159 (2003).
-
(2003)
J. Approx. Theory
, vol.122
, pp. 151-159
-
-
Kainen, P.C.1
Kůrková, V.2
Vogt, A.3
-
15
-
-
0008241587
-
Geometry and topology of continuous best and near best approximations
-
P. C. Kainen, V. Kůrková, and A. Vogt, Geometry and topology of continuous best and near best approximations, J. Approx. Theory 105, 252-262 (2000).
-
(2000)
J. Approx. Theory
, vol.105
, pp. 252-262
-
-
Kainen, P.C.1
Kůrková, V.2
Vogt, A.3
-
16
-
-
18744387645
-
An integral formula for Heaviside neural networks
-
P. C. Kainen, V. Kůrková, and A. Vogt, An integral formula for Heaviside neural networks, Neural Network World 3, 313-319 (2000).
-
(2000)
Neural Network World
, vol.3
, pp. 313-319
-
-
Kainen, P.C.1
Kůrková, V.2
Vogt, A.3
-
17
-
-
0034266877
-
Best approximation by Heaviside perceptron networks
-
P. C. Kainen, V. Kůrková, and A. Vogt, Best approximation by Heaviside perceptron networks, Neural Networks 13, 695-697 (2000).
-
(2000)
Neural Networks
, vol.13
, pp. 695-697
-
-
Kainen, P.C.1
Kůrková, V.2
Vogt, A.3
-
18
-
-
0344993943
-
Approximation by neural networks is not continuous
-
P. C. Kainen, V. Kůrková, and A. Vogt, Approximation by neural networks is not continuous, Neurocomputing 29, 47-56 (1999).
-
(1999)
Neurocomputing
, vol.29
, pp. 47-56
-
-
Kainen, P.C.1
Kůrková, V.2
Vogt, A.3
-
19
-
-
0343118761
-
Estimates of the number of hidden units and variation with respect to half-spaces
-
V. Kůrková, P. C. Kainen, and V. Kreinovich, Estimates of the number of hidden units and variation with respect to half-spaces, Neural Networks 10, 1061-1068 (1997).
-
(1997)
Neural Networks
, vol.10
, pp. 1061-1068
-
-
Kůrková, V.1
Kainen, P.C.2
Kreinovich, V.3
|