메뉴 건너뛰기




Volumn 34, Issue 9, 2010, Pages 2096-2109

Tempered stable and tempered infinitely divisible GARCH models

Author keywords

GARCH model option pricing; Rapidly decreasing tempered stable distribution; Tempered infinitely divisible distribution; Tempered stable distribution

Indexed keywords


EID: 77954144448     PISSN: 03784266     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbankfin.2010.01.015     Document Type: Article
Times cited : (81)

References (33)
  • 3
    • 77954143547 scopus 로고    scopus 로고
    • Normal modified stable processes. Economics Series Working Papers, University of Oxford.
    • Barndorff-Nielsen, O., Shephard, N., 2001. Normal modified stable processes. Economics Series Working Papers, University of Oxford.
    • (2001)
    • Barndorff-Nielsen, O.1    Shephard, N.2
  • 4
    • 44849105179 scopus 로고    scopus 로고
    • A GARCH option pricing model with filtered historical simulation
    • Barone-Adesi G., Engle R., Mancini L. A GARCH option pricing model with filtered historical simulation. Review of Financial Studies 2008, 21:1223-1258.
    • (2008) Review of Financial Studies , vol.21 , pp. 1223-1258
    • Barone-Adesi, G.1    Engle, R.2    Mancini, L.3
  • 5
    • 55449099617 scopus 로고    scopus 로고
    • Misspecification and domain issues in fitting GARCH (1,1) models: A Monte Carlo investigation
    • Bellini F., Bottolo L. Misspecification and domain issues in fitting GARCH (1,1) models: A Monte Carlo investigation. Communications in Statistics: Simulation and Computation 2009, 38:31-45.
    • (2009) Communications in Statistics: Simulation and Computation , vol.38 , pp. 31-45
    • Bellini, F.1    Bottolo, L.2
  • 6
    • 77954145570 scopus 로고    scopus 로고
    • forthcoming-a. Tempered infinitely divisible distributions and processes. Theory of Probability and Its Applications (TVP), Society for Industrial and Applied Mathematics (SIAM).
    • Bianchi, M., Rachev, S., Kim, Y., Fabozzi, F., forthcoming-a. Tempered infinitely divisible distributions and processes. Theory of Probability and Its Applications (TVP), Society for Industrial and Applied Mathematics (SIAM).
    • Bianchi, M.1    Rachev, S.2    Kim, Y.3    Fabozzi, F.4
  • 7
    • 77954145761 scopus 로고    scopus 로고
    • forthcoming-b. Tempered stable distributions and processes in finance: Numerical analysis. In: Corazza, M., Pizzi, C. (Eds.), Mathematical and Statistical Methods for Actuarial Sciences and Finance - MAF 2008, Springer, Milan.
    • Bianchi, M., Rachev, S., Kim, Y., Fabozzi, F., forthcoming-b. Tempered stable distributions and processes in finance: Numerical analysis. In: Corazza, M., Pizzi, C. (Eds.), Mathematical and Statistical Methods for Actuarial Sciences and Finance - MAF 2008, Springer, Milan.
    • Bianchi, M.1    Rachev, S.2    Kim, Y.3    Fabozzi, F.4
  • 8
    • 42449156579 scopus 로고
    • Generalized autoregressive conditional heteroskedasticity
    • Bollerslev T. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 1986, 31:307-327.
    • (1986) Journal of Econometrics , vol.31 , pp. 307-327
    • Bollerslev, T.1
  • 10
    • 0005833762 scopus 로고    scopus 로고
    • The fine structure of asset returns: An empirical investigation
    • Carr P., Geman H., Madan D., Yor M. The fine structure of asset returns: An empirical investigation. Journal of Business 2002, 75:305-332.
    • (2002) Journal of Business , vol.75 , pp. 305-332
    • Carr, P.1    Geman, H.2    Madan, D.3    Yor, M.4
  • 11
    • 0034196104 scopus 로고    scopus 로고
    • A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation
    • Chernov M., Ghysels E. A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation. Journal of Financial Economics 2000, 56:407-458.
    • (2000) Journal of Financial Economics , vol.56 , pp. 407-458
    • Chernov, M.1    Ghysels, E.2
  • 12
    • 77951233374 scopus 로고    scopus 로고
    • Option valuation with conditional heteroskedasticity and non-normality. Review of Financial Studies.
    • Christoffersen, P., Elkamhi, R., Feunou, B., Jacobs, K., 2010. Option valuation with conditional heteroskedasticity and non-normality. Review of Financial Studies.
    • (2010)
    • Christoffersen, P.1    Elkamhi, R.2    Feunou, B.3    Jacobs, K.4
  • 14
    • 0002567184 scopus 로고
    • The GARCH option pricing model
    • Duan J. The GARCH option pricing model. Mathematical Finance 1995, 5:13-32.
    • (1995) Mathematical Finance , vol.5 , pp. 13-32
    • Duan, J.1
  • 15
    • 77954141875 scopus 로고    scopus 로고
    • Conditionally fat-tailed distributions and the volatility smile in options. Technical report, Hong Kong University of Science and Technology.
    • Duan, J., 1999. Conditionally fat-tailed distributions and the volatility smile in options. Technical report, Hong Kong University of Science and Technology.
    • (1999)
    • Duan, J.1
  • 16
    • 33645128523 scopus 로고    scopus 로고
    • Approximating GARCH-jumps models, jump-diffusion processes, and option pricing
    • Duan J., Ritchken P., Sun Z. Approximating GARCH-jumps models, jump-diffusion processes, and option pricing. Mathematical Finance 2006, 16:21-52.
    • (2006) Mathematical Finance , vol.16 , pp. 21-52
    • Duan, J.1    Ritchken, P.2    Sun, Z.3
  • 17
    • 0032154736 scopus 로고    scopus 로고
    • Empirical martingale simulation for asset prices
    • Duan J., Simonato J. Empirical martingale simulation for asset prices. Management Science 1998, 44:1218-1233.
    • (1998) Management Science , vol.44 , pp. 1218-1233
    • Duan, J.1    Simonato, J.2
  • 19
    • 46349088177 scopus 로고    scopus 로고
    • Measuring kurtosis by right and left inequality orders
    • Fiori A. Measuring kurtosis by right and left inequality orders. Communications in Statistics: Theory and Methods 2008, 37:2665-2680.
    • (2008) Communications in Statistics: Theory and Methods , vol.37 , pp. 2665-2680
    • Fiori, A.1
  • 20
    • 51549119588 scopus 로고    scopus 로고
    • Pricing discretely monitored Asian options under Lévy processes
    • Fusai G., Meucci A. Pricing discretely monitored Asian options under Lévy processes. Journal of Banking and Finance 2008, 32:2076-2088.
    • (2008) Journal of Banking and Finance , vol.32 , pp. 2076-2088
    • Fusai, G.1    Meucci, A.2
  • 21
    • 34848831577 scopus 로고    scopus 로고
    • The relative entropy in CGMY processes and its applications to finance
    • Kim Y., Lee J. The relative entropy in CGMY processes and its applications to finance. Mathematical Methods of Operations Research 2006, 66:327-338.
    • (2006) Mathematical Methods of Operations Research , vol.66 , pp. 327-338
    • Kim, Y.1    Lee, J.2
  • 22
    • 43949126870 scopus 로고    scopus 로고
    • Financial market models with Lévy processes and time-varying volatility
    • Kim Y., Rachev S., Bianchi M., Fabozzi F. Financial market models with Lévy processes and time-varying volatility. Journal of Banking and Finance 2008, 32:1363-1378.
    • (2008) Journal of Banking and Finance , vol.32 , pp. 1363-1378
    • Kim, Y.1    Rachev, S.2    Bianchi, M.3    Fabozzi, F.4
  • 23
    • 77954144521 scopus 로고    scopus 로고
    • Tempered stable and tempered infinitely divisible GARCH models. Technical report, University of Karlsruhe and KIT.
    • Kim, Y., Rachev, S., Bianchi, M., Fabozzi, F., 2009. Tempered stable and tempered infinitely divisible GARCH models. Technical report, University of Karlsruhe and KIT.
    • (2009)
    • Kim, Y.1    Rachev, S.2    Bianchi, M.3    Fabozzi, F.4
  • 24
    • 0000644312 scopus 로고
    • Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process
    • Koponen I. Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. Physical Review E 1995, 52:1197-1199.
    • (1995) Physical Review E , vol.52 , pp. 1197-1199
    • Koponen, I.1
  • 26
    • 67349195370 scopus 로고    scopus 로고
    • Smoothly truncated stable distributions, GARCH-models, and option pricing
    • Menn C., Rachev S. Smoothly truncated stable distributions, GARCH-models, and option pricing. Mathematical Methods of Operations Research 2009, 69:411-438.
    • (2009) Mathematical Methods of Operations Research , vol.69 , pp. 411-438
    • Menn, C.1    Rachev, S.2
  • 27
    • 50249138176 scopus 로고    scopus 로고
    • Option pricing in a GARCH model with tempered stable innovations
    • Mercuri L. Option pricing in a GARCH model with tempered stable innovations. Finance Research Letters 2008, 5:172-182.
    • (2008) Finance Research Letters , vol.5 , pp. 172-182
    • Mercuri, L.1
  • 28
    • 34548666654 scopus 로고    scopus 로고
    • Monte Carlo option pricing for tempered stable (CGMY) processes
    • Poirot J., Tankov P. Monte Carlo option pricing for tempered stable (CGMY) processes. Asia-Pacific Financial Markets 2006, 13:327-344.
    • (2006) Asia-Pacific Financial Markets , vol.13 , pp. 327-344
    • Poirot, J.1    Tankov, P.2
  • 32
    • 77953539291 scopus 로고    scopus 로고
    • Estimating financial risk measures for options
    • Sorwar G., Dowd K. Estimating financial risk measures for options. Journal of Banking and Finance 2010, 34:1982-1992.
    • (2010) Journal of Banking and Finance , vol.34 , pp. 1982-1992
    • Sorwar, G.1    Dowd, K.2
  • 33
    • 53849144660 scopus 로고    scopus 로고
    • American option pricing using GARCH models and the normal inverse Gaussian distribution
    • Stentoft L. American option pricing using GARCH models and the normal inverse Gaussian distribution. Journal of Financial Econometrics 2008, 6:540-582.
    • (2008) Journal of Financial Econometrics , vol.6 , pp. 540-582
    • Stentoft, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.